Step |
Hyp |
Ref |
Expression |
1 |
|
eqscut |
⊢ ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ( ( 𝐿 |s 𝑅 ) = 𝑋 ↔ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ) ) ) |
2 |
|
eqss |
⊢ ( ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ↔ ( ( bday ‘ 𝑋 ) ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ∧ ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ⊆ ( bday ‘ 𝑋 ) ) ) |
3 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
4 |
3
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐿 <<s { 𝑥 } ↔ 𝐿 <<s { 𝑋 } ) ) |
5 |
3
|
breq1d |
⊢ ( 𝑥 = 𝑋 → ( { 𝑥 } <<s 𝑅 ↔ { 𝑋 } <<s 𝑅 ) ) |
6 |
4 5
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ↔ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ) ) |
7 |
6
|
elrab3 |
⊢ ( 𝑋 ∈ No → ( 𝑋 ∈ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ↔ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ( 𝑋 ∈ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ↔ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ) ) |
9 |
8
|
biimpar |
⊢ ( ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) ∧ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ) → 𝑋 ∈ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) |
10 |
|
bdayfn |
⊢ bday Fn No |
11 |
|
ssrab2 |
⊢ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ⊆ No |
12 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ⊆ No ∧ 𝑋 ∈ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) → ( bday ‘ 𝑋 ) ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ) |
13 |
10 11 12
|
mp3an12 |
⊢ ( 𝑋 ∈ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } → ( bday ‘ 𝑋 ) ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ) |
14 |
|
intss1 |
⊢ ( ( bday ‘ 𝑋 ) ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) → ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ⊆ ( bday ‘ 𝑋 ) ) |
15 |
9 13 14
|
3syl |
⊢ ( ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) ∧ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ) → ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ⊆ ( bday ‘ 𝑋 ) ) |
16 |
15
|
biantrud |
⊢ ( ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) ∧ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ) → ( ( bday ‘ 𝑋 ) ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ↔ ( ( bday ‘ 𝑋 ) ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ∧ ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ⊆ ( bday ‘ 𝑋 ) ) ) ) |
17 |
|
ssint |
⊢ ( ( bday ‘ 𝑋 ) ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ↔ ∀ 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ( bday ‘ 𝑋 ) ⊆ 𝑧 ) |
18 |
|
fvelimab |
⊢ ( ( bday Fn No ∧ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ⊆ No ) → ( 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ↔ ∃ 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ( bday ‘ 𝑦 ) = 𝑧 ) ) |
19 |
10 11 18
|
mp2an |
⊢ ( 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ↔ ∃ 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ( bday ‘ 𝑦 ) = 𝑧 ) |
20 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
21 |
20
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐿 <<s { 𝑥 } ↔ 𝐿 <<s { 𝑦 } ) ) |
22 |
20
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( { 𝑥 } <<s 𝑅 ↔ { 𝑦 } <<s 𝑅 ) ) |
23 |
21 22
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ↔ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ) ) |
24 |
23
|
rexrab |
⊢ ( ∃ 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ( bday ‘ 𝑦 ) = 𝑧 ↔ ∃ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ∧ ( bday ‘ 𝑦 ) = 𝑧 ) ) |
25 |
19 24
|
bitri |
⊢ ( 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ↔ ∃ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ∧ ( bday ‘ 𝑦 ) = 𝑧 ) ) |
26 |
25
|
imbi1i |
⊢ ( ( 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ↔ ( ∃ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ∧ ( bday ‘ 𝑦 ) = 𝑧 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) |
27 |
|
r19.23v |
⊢ ( ∀ 𝑦 ∈ No ( ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ∧ ( bday ‘ 𝑦 ) = 𝑧 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ↔ ( ∃ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ∧ ( bday ‘ 𝑦 ) = 𝑧 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) |
28 |
|
eqcom |
⊢ ( ( bday ‘ 𝑦 ) = 𝑧 ↔ 𝑧 = ( bday ‘ 𝑦 ) ) |
29 |
28
|
anbi1ci |
⊢ ( ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ∧ ( bday ‘ 𝑦 ) = 𝑧 ) ↔ ( 𝑧 = ( bday ‘ 𝑦 ) ∧ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ) ) |
30 |
29
|
imbi1i |
⊢ ( ( ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ∧ ( bday ‘ 𝑦 ) = 𝑧 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ↔ ( ( 𝑧 = ( bday ‘ 𝑦 ) ∧ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) |
31 |
|
impexp |
⊢ ( ( ( 𝑧 = ( bday ‘ 𝑦 ) ∧ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ↔ ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) ) |
32 |
30 31
|
bitri |
⊢ ( ( ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ∧ ( bday ‘ 𝑦 ) = 𝑧 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ↔ ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) ) |
33 |
32
|
ralbii |
⊢ ( ∀ 𝑦 ∈ No ( ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ∧ ( bday ‘ 𝑦 ) = 𝑧 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ↔ ∀ 𝑦 ∈ No ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) ) |
34 |
26 27 33
|
3bitr2i |
⊢ ( ( 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ↔ ∀ 𝑦 ∈ No ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) ) |
35 |
34
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ↔ ∀ 𝑧 ∀ 𝑦 ∈ No ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) ) |
36 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ( bday ‘ 𝑋 ) ⊆ 𝑧 ↔ ∀ 𝑧 ( 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) |
37 |
|
ralcom4 |
⊢ ( ∀ 𝑦 ∈ No ∀ 𝑧 ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ∀ 𝑦 ∈ No ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) ) |
38 |
35 36 37
|
3bitr4i |
⊢ ( ∀ 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ( bday ‘ 𝑋 ) ⊆ 𝑧 ↔ ∀ 𝑦 ∈ No ∀ 𝑧 ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) ) |
39 |
|
fvex |
⊢ ( bday ‘ 𝑦 ) ∈ V |
40 |
|
sseq2 |
⊢ ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( bday ‘ 𝑋 ) ⊆ 𝑧 ↔ ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) |
41 |
40
|
imbi2d |
⊢ ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ↔ ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) ) |
42 |
39 41
|
ceqsalv |
⊢ ( ∀ 𝑧 ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) ↔ ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) |
43 |
42
|
ralbii |
⊢ ( ∀ 𝑦 ∈ No ∀ 𝑧 ( 𝑧 = ( bday ‘ 𝑦 ) → ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ 𝑧 ) ) ↔ ∀ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) |
44 |
38 43
|
bitri |
⊢ ( ∀ 𝑧 ∈ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ( bday ‘ 𝑋 ) ⊆ 𝑧 ↔ ∀ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) |
45 |
17 44
|
bitri |
⊢ ( ( bday ‘ 𝑋 ) ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ↔ ∀ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) |
46 |
16 45
|
bitr3di |
⊢ ( ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) ∧ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ) → ( ( ( bday ‘ 𝑋 ) ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ∧ ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ⊆ ( bday ‘ 𝑋 ) ) ↔ ∀ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) ) |
47 |
2 46
|
syl5bb |
⊢ ( ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) ∧ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ) → ( ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ↔ ∀ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) ) |
48 |
47
|
pm5.32da |
⊢ ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ( ( ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ) ↔ ( ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ∧ ∀ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) ) ) |
49 |
|
df-3an |
⊢ ( ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ) ↔ ( ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ) ) |
50 |
|
df-3an |
⊢ ( ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ∀ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) ↔ ( ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ) ∧ ∀ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) ) |
51 |
48 49 50
|
3bitr4g |
⊢ ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ( ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) } ) ) ↔ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ∀ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) ) ) |
52 |
1 51
|
bitrd |
⊢ ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ( ( 𝐿 |s 𝑅 ) = 𝑋 ↔ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ∀ 𝑦 ∈ No ( ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) → ( bday ‘ 𝑋 ) ⊆ ( bday ‘ 𝑦 ) ) ) ) ) |