Metamath Proof Explorer


Theorem sslttr

Description: Transitive law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion sslttr ( ( 𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅ ) → 𝐴 <<s 𝐶 )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐵 )
2 ssltex1 ( 𝐴 <<s 𝐵𝐴 ∈ V )
3 ssltex2 ( 𝐵 <<s 𝐶𝐶 ∈ V )
4 2 3 anim12i ( ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) )
5 4 adantl ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) → ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) )
6 ssltss1 ( 𝐴 <<s 𝐵𝐴 No )
7 6 ad2antrl ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) → 𝐴 No )
8 ssltss2 ( 𝐵 <<s 𝐶𝐶 No )
9 8 ad2antll ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) → 𝐶 No )
10 7 adantr ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝐴 No )
11 simprl ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝑥𝐴 )
12 10 11 sseldd ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝑥 No )
13 ssltss1 ( 𝐵 <<s 𝐶𝐵 No )
14 13 ad2antll ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) → 𝐵 No )
15 14 adantr ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝐵 No )
16 simpll ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝑦𝐵 )
17 15 16 sseldd ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝑦 No )
18 9 adantr ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝐶 No )
19 simprr ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝑧𝐶 )
20 18 19 sseldd ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝑧 No )
21 ssltsep ( 𝐴 <<s 𝐵 → ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 )
22 21 ad2antrl ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) → ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 )
23 22 adantr ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 )
24 rsp ( ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 → ( 𝑥𝐴 → ∀ 𝑦𝐵 𝑥 <s 𝑦 ) )
25 23 11 24 sylc ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → ∀ 𝑦𝐵 𝑥 <s 𝑦 )
26 rsp ( ∀ 𝑦𝐵 𝑥 <s 𝑦 → ( 𝑦𝐵𝑥 <s 𝑦 ) )
27 25 16 26 sylc ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝑥 <s 𝑦 )
28 ssltsep ( 𝐵 <<s 𝐶 → ∀ 𝑦𝐵𝑧𝐶 𝑦 <s 𝑧 )
29 28 ad2antll ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) → ∀ 𝑦𝐵𝑧𝐶 𝑦 <s 𝑧 )
30 29 adantr ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → ∀ 𝑦𝐵𝑧𝐶 𝑦 <s 𝑧 )
31 rsp ( ∀ 𝑦𝐵𝑧𝐶 𝑦 <s 𝑧 → ( 𝑦𝐵 → ∀ 𝑧𝐶 𝑦 <s 𝑧 ) )
32 30 16 31 sylc ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → ∀ 𝑧𝐶 𝑦 <s 𝑧 )
33 rsp ( ∀ 𝑧𝐶 𝑦 <s 𝑧 → ( 𝑧𝐶𝑦 <s 𝑧 ) )
34 32 19 33 sylc ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝑦 <s 𝑧 )
35 12 17 20 27 34 slttrd ( ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) ∧ ( 𝑥𝐴𝑧𝐶 ) ) → 𝑥 <s 𝑧 )
36 35 ralrimivva ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) → ∀ 𝑥𝐴𝑧𝐶 𝑥 <s 𝑧 )
37 7 9 36 3jca ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) → ( 𝐴 No 𝐶 No ∧ ∀ 𝑥𝐴𝑧𝐶 𝑥 <s 𝑧 ) )
38 brsslt ( 𝐴 <<s 𝐶 ↔ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ V ) ∧ ( 𝐴 No 𝐶 No ∧ ∀ 𝑥𝐴𝑧𝐶 𝑥 <s 𝑧 ) ) )
39 5 37 38 sylanbrc ( ( 𝑦𝐵 ∧ ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ) → 𝐴 <<s 𝐶 )
40 39 ex ( 𝑦𝐵 → ( ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → 𝐴 <<s 𝐶 ) )
41 40 exlimiv ( ∃ 𝑦 𝑦𝐵 → ( ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → 𝐴 <<s 𝐶 ) )
42 1 41 sylbi ( 𝐵 ≠ ∅ → ( ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → 𝐴 <<s 𝐶 ) )
43 42 com12 ( ( 𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → ( 𝐵 ≠ ∅ → 𝐴 <<s 𝐶 ) )
44 43 3impia ( ( 𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅ ) → 𝐴 <<s 𝐶 )