Metamath Proof Explorer


Theorem sslttr

Description: Transitive law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion sslttr ( ( 𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅ ) → 𝐴 <<s 𝐶 )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐵 )
2 ssltex1 ( 𝐴 <<s 𝐵𝐴 ∈ V )
3 2 3ad2ant2 ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → 𝐴 ∈ V )
4 ssltex2 ( 𝐵 <<s 𝐶𝐶 ∈ V )
5 4 3ad2ant3 ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → 𝐶 ∈ V )
6 ssltss1 ( 𝐴 <<s 𝐵𝐴 No )
7 6 3ad2ant2 ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → 𝐴 No )
8 ssltss2 ( 𝐵 <<s 𝐶𝐶 No )
9 8 3ad2ant3 ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → 𝐶 No )
10 7 3ad2ant1 ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝐴 No )
11 simp2 ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝑥𝐴 )
12 10 11 sseldd ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝑥 No )
13 ssltss2 ( 𝐴 <<s 𝐵𝐵 No )
14 13 3ad2ant2 ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → 𝐵 No )
15 14 3ad2ant1 ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝐵 No )
16 simp11 ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝑦𝐵 )
17 15 16 sseldd ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝑦 No )
18 9 3ad2ant1 ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝐶 No )
19 simp3 ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝑧𝐶 )
20 18 19 sseldd ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝑧 No )
21 simp12 ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝐴 <<s 𝐵 )
22 21 11 16 ssltsepcd ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝑥 <s 𝑦 )
23 simp13 ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝐵 <<s 𝐶 )
24 23 16 19 ssltsepcd ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝑦 <s 𝑧 )
25 12 17 20 22 24 slttrd ( ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) ∧ 𝑥𝐴𝑧𝐶 ) → 𝑥 <s 𝑧 )
26 3 5 7 9 25 ssltd ( ( 𝑦𝐵𝐴 <<s 𝐵𝐵 <<s 𝐶 ) → 𝐴 <<s 𝐶 )
27 26 3exp ( 𝑦𝐵 → ( 𝐴 <<s 𝐵 → ( 𝐵 <<s 𝐶𝐴 <<s 𝐶 ) ) )
28 27 exlimiv ( ∃ 𝑦 𝑦𝐵 → ( 𝐴 <<s 𝐵 → ( 𝐵 <<s 𝐶𝐴 <<s 𝐶 ) ) )
29 1 28 sylbi ( 𝐵 ≠ ∅ → ( 𝐴 <<s 𝐵 → ( 𝐵 <<s 𝐶𝐴 <<s 𝐶 ) ) )
30 29 3imp231 ( ( 𝐴 <<s 𝐵𝐵 <<s 𝐶𝐵 ≠ ∅ ) → 𝐴 <<s 𝐶 )