Description: Transitive law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | sslttr | |- ( ( A < |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 | |- ( B =/= (/) <-> E. y y e. B ) |
|
2 | ssltex1 | |- ( A < |
|
3 | 2 | 3ad2ant2 | |- ( ( y e. B /\ A < |
4 | ssltex2 | |- ( B < |
|
5 | 4 | 3ad2ant3 | |- ( ( y e. B /\ A < |
6 | ssltss1 | |- ( A < |
|
7 | 6 | 3ad2ant2 | |- ( ( y e. B /\ A < |
8 | ssltss2 | |- ( B < |
|
9 | 8 | 3ad2ant3 | |- ( ( y e. B /\ A < |
10 | 7 | 3ad2ant1 | |- ( ( ( y e. B /\ A < |
11 | simp2 | |- ( ( ( y e. B /\ A < |
|
12 | 10 11 | sseldd | |- ( ( ( y e. B /\ A < |
13 | ssltss2 | |- ( A < |
|
14 | 13 | 3ad2ant2 | |- ( ( y e. B /\ A < |
15 | 14 | 3ad2ant1 | |- ( ( ( y e. B /\ A < |
16 | simp11 | |- ( ( ( y e. B /\ A < |
|
17 | 15 16 | sseldd | |- ( ( ( y e. B /\ A < |
18 | 9 | 3ad2ant1 | |- ( ( ( y e. B /\ A < |
19 | simp3 | |- ( ( ( y e. B /\ A < |
|
20 | 18 19 | sseldd | |- ( ( ( y e. B /\ A < |
21 | simp12 | |- ( ( ( y e. B /\ A < |
|
22 | 21 11 16 | ssltsepcd | |- ( ( ( y e. B /\ A < |
23 | simp13 | |- ( ( ( y e. B /\ A < |
|
24 | 23 16 19 | ssltsepcd | |- ( ( ( y e. B /\ A < |
25 | 12 17 20 22 24 | slttrd | |- ( ( ( y e. B /\ A < |
26 | 3 5 7 9 25 | ssltd | |- ( ( y e. B /\ A < |
27 | 26 | 3exp | |- ( y e. B -> ( A < |
28 | 27 | exlimiv | |- ( E. y y e. B -> ( A < |
29 | 1 28 | sylbi | |- ( B =/= (/) -> ( A < |
30 | 29 | 3imp231 | |- ( ( A < |