Metamath Proof Explorer


Theorem sslttr

Description: Transitive law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion sslttr
|- ( ( A < A <

Proof

Step Hyp Ref Expression
1 n0
 |-  ( B =/= (/) <-> E. y y e. B )
2 ssltex1
 |-  ( A < A e. _V )
3 2 3ad2ant2
 |-  ( ( y e. B /\ A < A e. _V )
4 ssltex2
 |-  ( B < C e. _V )
5 4 3ad2ant3
 |-  ( ( y e. B /\ A < C e. _V )
6 ssltss1
 |-  ( A < A C_ No )
7 6 3ad2ant2
 |-  ( ( y e. B /\ A < A C_ No )
8 ssltss2
 |-  ( B < C C_ No )
9 8 3ad2ant3
 |-  ( ( y e. B /\ A < C C_ No )
10 7 3ad2ant1
 |-  ( ( ( y e. B /\ A < A C_ No )
11 simp2
 |-  ( ( ( y e. B /\ A < x e. A )
12 10 11 sseldd
 |-  ( ( ( y e. B /\ A < x e. No )
13 ssltss2
 |-  ( A < B C_ No )
14 13 3ad2ant2
 |-  ( ( y e. B /\ A < B C_ No )
15 14 3ad2ant1
 |-  ( ( ( y e. B /\ A < B C_ No )
16 simp11
 |-  ( ( ( y e. B /\ A < y e. B )
17 15 16 sseldd
 |-  ( ( ( y e. B /\ A < y e. No )
18 9 3ad2ant1
 |-  ( ( ( y e. B /\ A < C C_ No )
19 simp3
 |-  ( ( ( y e. B /\ A < z e. C )
20 18 19 sseldd
 |-  ( ( ( y e. B /\ A < z e. No )
21 simp12
 |-  ( ( ( y e. B /\ A < A <
22 21 11 16 ssltsepcd
 |-  ( ( ( y e. B /\ A < x 
23 simp13
 |-  ( ( ( y e. B /\ A < B <
24 23 16 19 ssltsepcd
 |-  ( ( ( y e. B /\ A < y 
25 12 17 20 22 24 slttrd
 |-  ( ( ( y e. B /\ A < x 
26 3 5 7 9 25 ssltd
 |-  ( ( y e. B /\ A < A <
27 26 3exp
 |-  ( y e. B -> ( A < ( B < A <
28 27 exlimiv
 |-  ( E. y y e. B -> ( A < ( B < A <
29 1 28 sylbi
 |-  ( B =/= (/) -> ( A < ( B < A <
30 29 3imp231
 |-  ( ( A < A <