Metamath Proof Explorer


Theorem ssltun1

Description: Union law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion ssltun1
|- ( ( A < ( A u. B ) <

Proof

Step Hyp Ref Expression
1 ssltex1
 |-  ( A < A e. _V )
2 1 adantr
 |-  ( ( A < A e. _V )
3 ssltex1
 |-  ( B < B e. _V )
4 3 adantl
 |-  ( ( A < B e. _V )
5 2 4 unexd
 |-  ( ( A < ( A u. B ) e. _V )
6 ssltex2
 |-  ( A < C e. _V )
7 6 adantr
 |-  ( ( A < C e. _V )
8 ssltss1
 |-  ( A < A C_ No )
9 8 adantr
 |-  ( ( A < A C_ No )
10 ssltss1
 |-  ( B < B C_ No )
11 10 adantl
 |-  ( ( A < B C_ No )
12 9 11 unssd
 |-  ( ( A < ( A u. B ) C_ No )
13 ssltss2
 |-  ( A < C C_ No )
14 13 adantr
 |-  ( ( A < C C_ No )
15 elun
 |-  ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) )
16 ssltsepc
 |-  ( ( A < x 
17 16 3exp
 |-  ( A < ( x e. A -> ( y e. C -> x 
18 17 adantr
 |-  ( ( A < ( x e. A -> ( y e. C -> x 
19 18 com12
 |-  ( x e. A -> ( ( A < ( y e. C -> x 
20 ssltsepc
 |-  ( ( B < x 
21 20 3exp
 |-  ( B < ( x e. B -> ( y e. C -> x 
22 21 adantl
 |-  ( ( A < ( x e. B -> ( y e. C -> x 
23 22 com12
 |-  ( x e. B -> ( ( A < ( y e. C -> x 
24 19 23 jaoi
 |-  ( ( x e. A \/ x e. B ) -> ( ( A < ( y e. C -> x 
25 15 24 sylbi
 |-  ( x e. ( A u. B ) -> ( ( A < ( y e. C -> x 
26 25 3imp21
 |-  ( ( ( A < x 
27 5 7 12 14 26 ssltd
 |-  ( ( A < ( A u. B ) <