| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltex1 |
|- ( A < A e. _V ) |
| 2 |
1
|
adantr |
|- ( ( A < A e. _V ) |
| 3 |
|
ssltex1 |
|- ( B < B e. _V ) |
| 4 |
3
|
adantl |
|- ( ( A < B e. _V ) |
| 5 |
2 4
|
unexd |
|- ( ( A < ( A u. B ) e. _V ) |
| 6 |
|
ssltex2 |
|- ( A < C e. _V ) |
| 7 |
6
|
adantr |
|- ( ( A < C e. _V ) |
| 8 |
|
ssltss1 |
|- ( A < A C_ No ) |
| 9 |
8
|
adantr |
|- ( ( A < A C_ No ) |
| 10 |
|
ssltss1 |
|- ( B < B C_ No ) |
| 11 |
10
|
adantl |
|- ( ( A < B C_ No ) |
| 12 |
9 11
|
unssd |
|- ( ( A < ( A u. B ) C_ No ) |
| 13 |
|
ssltss2 |
|- ( A < C C_ No ) |
| 14 |
13
|
adantr |
|- ( ( A < C C_ No ) |
| 15 |
|
elun |
|- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
| 16 |
|
ssltsepc |
|- ( ( A < x |
| 17 |
16
|
3exp |
|- ( A < ( x e. A -> ( y e. C -> x |
| 18 |
17
|
adantr |
|- ( ( A < ( x e. A -> ( y e. C -> x |
| 19 |
18
|
com12 |
|- ( x e. A -> ( ( A < ( y e. C -> x |
| 20 |
|
ssltsepc |
|- ( ( B < x |
| 21 |
20
|
3exp |
|- ( B < ( x e. B -> ( y e. C -> x |
| 22 |
21
|
adantl |
|- ( ( A < ( x e. B -> ( y e. C -> x |
| 23 |
22
|
com12 |
|- ( x e. B -> ( ( A < ( y e. C -> x |
| 24 |
19 23
|
jaoi |
|- ( ( x e. A \/ x e. B ) -> ( ( A < ( y e. C -> x |
| 25 |
15 24
|
sylbi |
|- ( x e. ( A u. B ) -> ( ( A < ( y e. C -> x |
| 26 |
25
|
3imp21 |
|- ( ( ( A < x |
| 27 |
5 7 12 14 26
|
ssltd |
|- ( ( A < ( A u. B ) < |