Step |
Hyp |
Ref |
Expression |
1 |
|
ssltex1 |
|- ( A < A e. _V ) |
2 |
1
|
adantr |
|- ( ( A < A e. _V ) |
3 |
|
ssltex1 |
|- ( B < B e. _V ) |
4 |
3
|
adantl |
|- ( ( A < B e. _V ) |
5 |
2 4
|
unexd |
|- ( ( A < ( A u. B ) e. _V ) |
6 |
|
ssltex2 |
|- ( A < C e. _V ) |
7 |
6
|
adantr |
|- ( ( A < C e. _V ) |
8 |
|
ssltss1 |
|- ( A < A C_ No ) |
9 |
8
|
adantr |
|- ( ( A < A C_ No ) |
10 |
|
ssltss1 |
|- ( B < B C_ No ) |
11 |
10
|
adantl |
|- ( ( A < B C_ No ) |
12 |
9 11
|
unssd |
|- ( ( A < ( A u. B ) C_ No ) |
13 |
|
ssltss2 |
|- ( A < C C_ No ) |
14 |
13
|
adantr |
|- ( ( A < C C_ No ) |
15 |
|
elun |
|- ( x e. ( A u. B ) <-> ( x e. A \/ x e. B ) ) |
16 |
|
ssltsepc |
|- ( ( A < x |
17 |
16
|
3exp |
|- ( A < ( x e. A -> ( y e. C -> x |
18 |
17
|
adantr |
|- ( ( A < ( x e. A -> ( y e. C -> x |
19 |
18
|
com12 |
|- ( x e. A -> ( ( A < ( y e. C -> x |
20 |
|
ssltsepc |
|- ( ( B < x |
21 |
20
|
3exp |
|- ( B < ( x e. B -> ( y e. C -> x |
22 |
21
|
adantl |
|- ( ( A < ( x e. B -> ( y e. C -> x |
23 |
22
|
com12 |
|- ( x e. B -> ( ( A < ( y e. C -> x |
24 |
19 23
|
jaoi |
|- ( ( x e. A \/ x e. B ) -> ( ( A < ( y e. C -> x |
25 |
15 24
|
sylbi |
|- ( x e. ( A u. B ) -> ( ( A < ( y e. C -> x |
26 |
25
|
3imp21 |
|- ( ( ( A < x |
27 |
5 7 12 14 26
|
ssltd |
|- ( ( A < ( A u. B ) < |