Metamath Proof Explorer


Theorem ssltun1

Description: Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion ssltun1 AsCBsCABsC

Proof

Step Hyp Ref Expression
1 ssltex1 AsCAV
2 1 adantr AsCBsCAV
3 ssltex1 BsCBV
4 3 adantl AsCBsCBV
5 2 4 unexd AsCBsCABV
6 ssltex2 AsCCV
7 6 adantr AsCBsCCV
8 ssltss1 AsCANo
9 8 adantr AsCBsCANo
10 ssltss1 BsCBNo
11 10 adantl AsCBsCBNo
12 9 11 unssd AsCBsCABNo
13 ssltss2 AsCCNo
14 13 adantr AsCBsCCNo
15 elun xABxAxB
16 ssltsepc AsCxAyCx<sy
17 16 3exp AsCxAyCx<sy
18 17 adantr AsCBsCxAyCx<sy
19 18 com12 xAAsCBsCyCx<sy
20 ssltsepc BsCxByCx<sy
21 20 3exp BsCxByCx<sy
22 21 adantl AsCBsCxByCx<sy
23 22 com12 xBAsCBsCyCx<sy
24 19 23 jaoi xAxBAsCBsCyCx<sy
25 15 24 sylbi xABAsCBsCyCx<sy
26 25 3imp21 AsCBsCxAByCx<sy
27 5 7 12 14 26 ssltd AsCBsCABsC