Metamath Proof Explorer


Theorem ssltun1

Description: Union law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion ssltun1 ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝐴𝐵 ) <<s 𝐶 )

Proof

Step Hyp Ref Expression
1 ssltex1 ( 𝐴 <<s 𝐶𝐴 ∈ V )
2 1 adantr ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → 𝐴 ∈ V )
3 ssltex1 ( 𝐵 <<s 𝐶𝐵 ∈ V )
4 3 adantl ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → 𝐵 ∈ V )
5 2 4 unexd ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝐴𝐵 ) ∈ V )
6 ssltex2 ( 𝐴 <<s 𝐶𝐶 ∈ V )
7 6 adantr ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → 𝐶 ∈ V )
8 ssltss1 ( 𝐴 <<s 𝐶𝐴 No )
9 8 adantr ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → 𝐴 No )
10 ssltss1 ( 𝐵 <<s 𝐶𝐵 No )
11 10 adantl ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → 𝐵 No )
12 9 11 unssd ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝐴𝐵 ) ⊆ No )
13 ssltss2 ( 𝐴 <<s 𝐶𝐶 No )
14 13 adantr ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → 𝐶 No )
15 elun ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
16 ssltsepc ( ( 𝐴 <<s 𝐶𝑥𝐴𝑦𝐶 ) → 𝑥 <s 𝑦 )
17 16 3exp ( 𝐴 <<s 𝐶 → ( 𝑥𝐴 → ( 𝑦𝐶𝑥 <s 𝑦 ) ) )
18 17 adantr ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝑥𝐴 → ( 𝑦𝐶𝑥 <s 𝑦 ) ) )
19 18 com12 ( 𝑥𝐴 → ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝑦𝐶𝑥 <s 𝑦 ) ) )
20 ssltsepc ( ( 𝐵 <<s 𝐶𝑥𝐵𝑦𝐶 ) → 𝑥 <s 𝑦 )
21 20 3exp ( 𝐵 <<s 𝐶 → ( 𝑥𝐵 → ( 𝑦𝐶𝑥 <s 𝑦 ) ) )
22 21 adantl ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝑥𝐵 → ( 𝑦𝐶𝑥 <s 𝑦 ) ) )
23 22 com12 ( 𝑥𝐵 → ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝑦𝐶𝑥 <s 𝑦 ) ) )
24 19 23 jaoi ( ( 𝑥𝐴𝑥𝐵 ) → ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝑦𝐶𝑥 <s 𝑦 ) ) )
25 15 24 sylbi ( 𝑥 ∈ ( 𝐴𝐵 ) → ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝑦𝐶𝑥 <s 𝑦 ) ) )
26 25 3imp21 ( ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) ∧ 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝑦𝐶 ) → 𝑥 <s 𝑦 )
27 5 7 12 14 26 ssltd ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝐴𝐵 ) <<s 𝐶 )