Step |
Hyp |
Ref |
Expression |
1 |
|
ssltex1 |
⊢ ( 𝐴 <<s 𝐶 → 𝐴 ∈ V ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐴 ∈ V ) |
3 |
|
ssltex1 |
⊢ ( 𝐵 <<s 𝐶 → 𝐵 ∈ V ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐵 ∈ V ) |
5 |
2 4
|
unexd |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
6 |
|
ssltex2 |
⊢ ( 𝐴 <<s 𝐶 → 𝐶 ∈ V ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐶 ∈ V ) |
8 |
|
ssltss1 |
⊢ ( 𝐴 <<s 𝐶 → 𝐴 ⊆ No ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐴 ⊆ No ) |
10 |
|
ssltss1 |
⊢ ( 𝐵 <<s 𝐶 → 𝐵 ⊆ No ) |
11 |
10
|
adantl |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐵 ⊆ No ) |
12 |
9 11
|
unssd |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝐴 ∪ 𝐵 ) ⊆ No ) |
13 |
|
ssltss2 |
⊢ ( 𝐴 <<s 𝐶 → 𝐶 ⊆ No ) |
14 |
13
|
adantr |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐶 ⊆ No ) |
15 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
16 |
|
ssltsepc |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → 𝑥 <s 𝑦 ) |
17 |
16
|
3exp |
⊢ ( 𝐴 <<s 𝐶 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
19 |
18
|
com12 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
20 |
|
ssltsepc |
⊢ ( ( 𝐵 <<s 𝐶 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝑥 <s 𝑦 ) |
21 |
20
|
3exp |
⊢ ( 𝐵 <<s 𝐶 → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
23 |
22
|
com12 |
⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
24 |
19 23
|
jaoi |
⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) → ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
25 |
15 24
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
26 |
25
|
3imp21 |
⊢ ( ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑥 <s 𝑦 ) |
27 |
5 7 12 14 26
|
ssltd |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝐴 ∪ 𝐵 ) <<s 𝐶 ) |