| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssltex1 |
⊢ ( 𝐴 <<s 𝐶 → 𝐴 ∈ V ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐴 ∈ V ) |
| 3 |
|
ssltex1 |
⊢ ( 𝐵 <<s 𝐶 → 𝐵 ∈ V ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐵 ∈ V ) |
| 5 |
2 4
|
unexd |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) |
| 6 |
|
ssltex2 |
⊢ ( 𝐴 <<s 𝐶 → 𝐶 ∈ V ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐶 ∈ V ) |
| 8 |
|
ssltss1 |
⊢ ( 𝐴 <<s 𝐶 → 𝐴 ⊆ No ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐴 ⊆ No ) |
| 10 |
|
ssltss1 |
⊢ ( 𝐵 <<s 𝐶 → 𝐵 ⊆ No ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐵 ⊆ No ) |
| 12 |
9 11
|
unssd |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝐴 ∪ 𝐵 ) ⊆ No ) |
| 13 |
|
ssltss2 |
⊢ ( 𝐴 <<s 𝐶 → 𝐶 ⊆ No ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → 𝐶 ⊆ No ) |
| 15 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) |
| 16 |
|
ssltsepc |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶 ) → 𝑥 <s 𝑦 ) |
| 17 |
16
|
3exp |
⊢ ( 𝐴 <<s 𝐶 → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
| 19 |
18
|
com12 |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
| 20 |
|
ssltsepc |
⊢ ( ( 𝐵 <<s 𝐶 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) → 𝑥 <s 𝑦 ) |
| 21 |
20
|
3exp |
⊢ ( 𝐵 <<s 𝐶 → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑥 ∈ 𝐵 → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
| 23 |
22
|
com12 |
⊢ ( 𝑥 ∈ 𝐵 → ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
| 24 |
19 23
|
jaoi |
⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) → ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
| 25 |
15 24
|
sylbi |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) → ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝑦 ∈ 𝐶 → 𝑥 <s 𝑦 ) ) ) |
| 26 |
25
|
3imp21 |
⊢ ( ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) ∧ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝑦 ∈ 𝐶 ) → 𝑥 <s 𝑦 ) |
| 27 |
5 7 12 14 26
|
ssltd |
⊢ ( ( 𝐴 <<s 𝐶 ∧ 𝐵 <<s 𝐶 ) → ( 𝐴 ∪ 𝐵 ) <<s 𝐶 ) |