Metamath Proof Explorer


Theorem ssltun1

Description: Union law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion ssltun1 ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝐴𝐵 ) <<s 𝐶 )

Proof

Step Hyp Ref Expression
1 ssltex1 ( 𝐴 <<s 𝐶𝐴 ∈ V )
2 ssltex1 ( 𝐵 <<s 𝐶𝐵 ∈ V )
3 unexg ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴𝐵 ) ∈ V )
4 1 2 3 syl2an ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝐴𝐵 ) ∈ V )
5 ssltex2 ( 𝐴 <<s 𝐶𝐶 ∈ V )
6 5 adantr ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → 𝐶 ∈ V )
7 4 6 jca ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( ( 𝐴𝐵 ) ∈ V ∧ 𝐶 ∈ V ) )
8 ssltss1 ( 𝐴 <<s 𝐶𝐴 No )
9 8 adantr ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → 𝐴 No )
10 ssltss1 ( 𝐵 <<s 𝐶𝐵 No )
11 10 adantl ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → 𝐵 No )
12 9 11 unssd ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝐴𝐵 ) ⊆ No )
13 ssltss2 ( 𝐵 <<s 𝐶𝐶 No )
14 13 adantl ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → 𝐶 No )
15 ssltsep ( 𝐴 <<s 𝐶 → ∀ 𝑥𝐴𝑦𝐶 𝑥 <s 𝑦 )
16 15 adantr ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ∀ 𝑥𝐴𝑦𝐶 𝑥 <s 𝑦 )
17 ssltsep ( 𝐵 <<s 𝐶 → ∀ 𝑥𝐵𝑦𝐶 𝑥 <s 𝑦 )
18 17 adantl ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ∀ 𝑥𝐵𝑦𝐶 𝑥 <s 𝑦 )
19 ralunb ( ∀ 𝑥 ∈ ( 𝐴𝐵 ) ∀ 𝑦𝐶 𝑥 <s 𝑦 ↔ ( ∀ 𝑥𝐴𝑦𝐶 𝑥 <s 𝑦 ∧ ∀ 𝑥𝐵𝑦𝐶 𝑥 <s 𝑦 ) )
20 16 18 19 sylanbrc ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ∀ 𝑥 ∈ ( 𝐴𝐵 ) ∀ 𝑦𝐶 𝑥 <s 𝑦 )
21 12 14 20 3jca ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( ( 𝐴𝐵 ) ⊆ No 𝐶 No ∧ ∀ 𝑥 ∈ ( 𝐴𝐵 ) ∀ 𝑦𝐶 𝑥 <s 𝑦 ) )
22 brsslt ( ( 𝐴𝐵 ) <<s 𝐶 ↔ ( ( ( 𝐴𝐵 ) ∈ V ∧ 𝐶 ∈ V ) ∧ ( ( 𝐴𝐵 ) ⊆ No 𝐶 No ∧ ∀ 𝑥 ∈ ( 𝐴𝐵 ) ∀ 𝑦𝐶 𝑥 <s 𝑦 ) ) )
23 7 21 22 sylanbrc ( ( 𝐴 <<s 𝐶𝐵 <<s 𝐶 ) → ( 𝐴𝐵 ) <<s 𝐶 )