Metamath Proof Explorer


Theorem ssltun2

Description: Union law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion ssltun2 ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐴 <<s ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssltex1 ( 𝐴 <<s 𝐵𝐴 ∈ V )
2 1 adantr ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐴 ∈ V )
3 ssltex2 ( 𝐴 <<s 𝐵𝐵 ∈ V )
4 3 adantr ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐵 ∈ V )
5 ssltex2 ( 𝐴 <<s 𝐶𝐶 ∈ V )
6 5 adantl ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐶 ∈ V )
7 4 6 unexd ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝐵𝐶 ) ∈ V )
8 ssltss1 ( 𝐴 <<s 𝐵𝐴 No )
9 8 adantr ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐴 No )
10 ssltss2 ( 𝐴 <<s 𝐵𝐵 No )
11 10 adantr ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐵 No )
12 ssltss2 ( 𝐴 <<s 𝐶𝐶 No )
13 12 adantl ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐶 No )
14 11 13 unssd ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝐵𝐶 ) ⊆ No )
15 elun ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵𝑦𝐶 ) )
16 ssltsepc ( ( 𝐴 <<s 𝐵𝑥𝐴𝑦𝐵 ) → 𝑥 <s 𝑦 )
17 16 3exp ( 𝐴 <<s 𝐵 → ( 𝑥𝐴 → ( 𝑦𝐵𝑥 <s 𝑦 ) ) )
18 17 adantr ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝑥𝐴 → ( 𝑦𝐵𝑥 <s 𝑦 ) ) )
19 18 com3r ( 𝑦𝐵 → ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝑥𝐴𝑥 <s 𝑦 ) ) )
20 ssltsepc ( ( 𝐴 <<s 𝐶𝑥𝐴𝑦𝐶 ) → 𝑥 <s 𝑦 )
21 20 3exp ( 𝐴 <<s 𝐶 → ( 𝑥𝐴 → ( 𝑦𝐶𝑥 <s 𝑦 ) ) )
22 21 adantl ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝑥𝐴 → ( 𝑦𝐶𝑥 <s 𝑦 ) ) )
23 22 com3r ( 𝑦𝐶 → ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝑥𝐴𝑥 <s 𝑦 ) ) )
24 19 23 jaoi ( ( 𝑦𝐵𝑦𝐶 ) → ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝑥𝐴𝑥 <s 𝑦 ) ) )
25 15 24 sylbi ( 𝑦 ∈ ( 𝐵𝐶 ) → ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝑥𝐴𝑥 <s 𝑦 ) ) )
26 25 3imp231 ( ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) ∧ 𝑥𝐴𝑦 ∈ ( 𝐵𝐶 ) ) → 𝑥 <s 𝑦 )
27 2 7 9 14 26 ssltd ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐴 <<s ( 𝐵𝐶 ) )