Metamath Proof Explorer


Theorem ssltun2

Description: Union law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion ssltun2 ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐴 <<s ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssltex1 ( 𝐴 <<s 𝐵𝐴 ∈ V )
2 1 adantr ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐴 ∈ V )
3 ssltex2 ( 𝐴 <<s 𝐵𝐵 ∈ V )
4 ssltex2 ( 𝐴 <<s 𝐶𝐶 ∈ V )
5 unexg ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ( 𝐵𝐶 ) ∈ V )
6 3 4 5 syl2an ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝐵𝐶 ) ∈ V )
7 2 6 jca ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝐴 ∈ V ∧ ( 𝐵𝐶 ) ∈ V ) )
8 ssltss1 ( 𝐴 <<s 𝐵𝐴 No )
9 8 adantr ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐴 No )
10 ssltss2 ( 𝐴 <<s 𝐵𝐵 No )
11 10 adantr ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐵 No )
12 ssltss2 ( 𝐴 <<s 𝐶𝐶 No )
13 12 adantl ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐶 No )
14 11 13 unssd ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝐵𝐶 ) ⊆ No )
15 ssltsep ( 𝐴 <<s 𝐵 → ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 )
16 15 adantr ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 )
17 ssltsep ( 𝐴 <<s 𝐶 → ∀ 𝑥𝐴𝑦𝐶 𝑥 <s 𝑦 )
18 17 adantl ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ∀ 𝑥𝐴𝑦𝐶 𝑥 <s 𝑦 )
19 ralunb ( ∀ 𝑦 ∈ ( 𝐵𝐶 ) 𝑥 <s 𝑦 ↔ ( ∀ 𝑦𝐵 𝑥 <s 𝑦 ∧ ∀ 𝑦𝐶 𝑥 <s 𝑦 ) )
20 19 ralbii ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐵𝐶 ) 𝑥 <s 𝑦 ↔ ∀ 𝑥𝐴 ( ∀ 𝑦𝐵 𝑥 <s 𝑦 ∧ ∀ 𝑦𝐶 𝑥 <s 𝑦 ) )
21 r19.26 ( ∀ 𝑥𝐴 ( ∀ 𝑦𝐵 𝑥 <s 𝑦 ∧ ∀ 𝑦𝐶 𝑥 <s 𝑦 ) ↔ ( ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ∧ ∀ 𝑥𝐴𝑦𝐶 𝑥 <s 𝑦 ) )
22 20 21 bitri ( ∀ 𝑥𝐴𝑦 ∈ ( 𝐵𝐶 ) 𝑥 <s 𝑦 ↔ ( ∀ 𝑥𝐴𝑦𝐵 𝑥 <s 𝑦 ∧ ∀ 𝑥𝐴𝑦𝐶 𝑥 <s 𝑦 ) )
23 16 18 22 sylanbrc ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ∀ 𝑥𝐴𝑦 ∈ ( 𝐵𝐶 ) 𝑥 <s 𝑦 )
24 9 14 23 3jca ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → ( 𝐴 No ∧ ( 𝐵𝐶 ) ⊆ No ∧ ∀ 𝑥𝐴𝑦 ∈ ( 𝐵𝐶 ) 𝑥 <s 𝑦 ) )
25 brsslt ( 𝐴 <<s ( 𝐵𝐶 ) ↔ ( ( 𝐴 ∈ V ∧ ( 𝐵𝐶 ) ∈ V ) ∧ ( 𝐴 No ∧ ( 𝐵𝐶 ) ⊆ No ∧ ∀ 𝑥𝐴𝑦 ∈ ( 𝐵𝐶 ) 𝑥 <s 𝑦 ) ) )
26 7 24 25 sylanbrc ( ( 𝐴 <<s 𝐵𝐴 <<s 𝐶 ) → 𝐴 <<s ( 𝐵𝐶 ) )