Metamath Proof Explorer


Theorem ssltun2

Description: Union law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion ssltun2
|- ( ( A < A <

Proof

Step Hyp Ref Expression
1 ssltex1
 |-  ( A < A e. _V )
2 1 adantr
 |-  ( ( A < A e. _V )
3 ssltex2
 |-  ( A < B e. _V )
4 3 adantr
 |-  ( ( A < B e. _V )
5 ssltex2
 |-  ( A < C e. _V )
6 5 adantl
 |-  ( ( A < C e. _V )
7 4 6 unexd
 |-  ( ( A < ( B u. C ) e. _V )
8 ssltss1
 |-  ( A < A C_ No )
9 8 adantr
 |-  ( ( A < A C_ No )
10 ssltss2
 |-  ( A < B C_ No )
11 10 adantr
 |-  ( ( A < B C_ No )
12 ssltss2
 |-  ( A < C C_ No )
13 12 adantl
 |-  ( ( A < C C_ No )
14 11 13 unssd
 |-  ( ( A < ( B u. C ) C_ No )
15 elun
 |-  ( y e. ( B u. C ) <-> ( y e. B \/ y e. C ) )
16 ssltsepc
 |-  ( ( A < x 
17 16 3exp
 |-  ( A < ( x e. A -> ( y e. B -> x 
18 17 adantr
 |-  ( ( A < ( x e. A -> ( y e. B -> x 
19 18 com3r
 |-  ( y e. B -> ( ( A < ( x e. A -> x 
20 ssltsepc
 |-  ( ( A < x 
21 20 3exp
 |-  ( A < ( x e. A -> ( y e. C -> x 
22 21 adantl
 |-  ( ( A < ( x e. A -> ( y e. C -> x 
23 22 com3r
 |-  ( y e. C -> ( ( A < ( x e. A -> x 
24 19 23 jaoi
 |-  ( ( y e. B \/ y e. C ) -> ( ( A < ( x e. A -> x 
25 15 24 sylbi
 |-  ( y e. ( B u. C ) -> ( ( A < ( x e. A -> x 
26 25 3imp231
 |-  ( ( ( A < x 
27 2 7 9 14 26 ssltd
 |-  ( ( A < A <