Metamath Proof Explorer


Theorem ssltun2

Description: Union law for surreal set less-than. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion ssltun2 AsBAsCAsBC

Proof

Step Hyp Ref Expression
1 ssltex1 AsBAV
2 1 adantr AsBAsCAV
3 ssltex2 AsBBV
4 3 adantr AsBAsCBV
5 ssltex2 AsCCV
6 5 adantl AsBAsCCV
7 4 6 unexd AsBAsCBCV
8 ssltss1 AsBANo
9 8 adantr AsBAsCANo
10 ssltss2 AsBBNo
11 10 adantr AsBAsCBNo
12 ssltss2 AsCCNo
13 12 adantl AsBAsCCNo
14 11 13 unssd AsBAsCBCNo
15 elun yBCyByC
16 ssltsepc AsBxAyBx<sy
17 16 3exp AsBxAyBx<sy
18 17 adantr AsBAsCxAyBx<sy
19 18 com3r yBAsBAsCxAx<sy
20 ssltsepc AsCxAyCx<sy
21 20 3exp AsCxAyCx<sy
22 21 adantl AsBAsCxAyCx<sy
23 22 com3r yCAsBAsCxAx<sy
24 19 23 jaoi yByCAsBAsCxAx<sy
25 15 24 sylbi yBCAsBAsCxAx<sy
26 25 3imp231 AsBAsCxAyBCx<sy
27 2 7 9 14 26 ssltd AsBAsCAsBC