Metamath Proof Explorer


Theorem scutun12

Description: Union law for surreal cuts. (Contributed by Scott Fenton, 9-Dec-2021)

Ref Expression
Assertion scutun12
|- ( ( A < ( ( A u. C ) |s ( B u. D ) ) = ( A |s B ) )

Proof

Step Hyp Ref Expression
1 simp1
 |-  ( ( A < A <
2 scutcut
 |-  ( A < ( ( A |s B ) e. No /\ A <
3 1 2 syl
 |-  ( ( A < ( ( A |s B ) e. No /\ A <
4 3 simp2d
 |-  ( ( A < A <
5 simp2
 |-  ( ( A < C <
6 ssltun1
 |-  ( ( A < ( A u. C ) <
7 4 5 6 syl2anc
 |-  ( ( A < ( A u. C ) <
8 3 simp3d
 |-  ( ( A < { ( A |s B ) } <
9 simp3
 |-  ( ( A < { ( A |s B ) } <
10 ssltun2
 |-  ( ( { ( A |s B ) } < { ( A |s B ) } <
11 8 9 10 syl2anc
 |-  ( ( A < { ( A |s B ) } <
12 ovex
 |-  ( A |s B ) e. _V
13 12 snnz
 |-  { ( A |s B ) } =/= (/)
14 sslttr
 |-  ( ( ( A u. C ) < ( A u. C ) <
15 13 14 mp3an3
 |-  ( ( ( A u. C ) < ( A u. C ) <
16 7 11 15 syl2anc
 |-  ( ( A < ( A u. C ) <
17 scutval
 |-  ( ( A u. C ) < ( ( A u. C ) |s ( B u. D ) ) = ( iota_ x e. { y e. No | ( ( A u. C ) <
18 16 17 syl
 |-  ( ( A < ( ( A u. C ) |s ( B u. D ) ) = ( iota_ x e. { y e. No | ( ( A u. C ) <
19 vex
 |-  x e. _V
20 19 elima
 |-  ( x e. ( bday " { y e. No | ( ( A u. C ) < E. z e. { y e. No | ( ( A u. C ) <
21 sneq
 |-  ( y = z -> { y } = { z } )
22 21 breq2d
 |-  ( y = z -> ( ( A u. C ) < ( A u. C ) <
23 21 breq1d
 |-  ( y = z -> ( { y } < { z } <
24 22 23 anbi12d
 |-  ( y = z -> ( ( ( A u. C ) < ( ( A u. C ) <
25 24 rexrab
 |-  ( E. z e. { y e. No | ( ( A u. C ) < E. z e. No ( ( ( A u. C ) <
26 20 25 bitri
 |-  ( x e. ( bday " { y e. No | ( ( A u. C ) < E. z e. No ( ( ( A u. C ) <
27 simplr
 |-  ( ( ( ( A < z e. No )
28 bdayfn
 |-  bday Fn No
29 fnbrfvb
 |-  ( ( bday Fn No /\ z e. No ) -> ( ( bday ` z ) = x <-> z bday x ) )
30 28 29 mpan
 |-  ( z e. No -> ( ( bday ` z ) = x <-> z bday x ) )
31 27 30 syl
 |-  ( ( ( ( A < ( ( bday ` z ) = x <-> z bday x ) )
32 simpll1
 |-  ( ( ( ( A < A <
33 scutbday
 |-  ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( A <
34 32 33 syl
 |-  ( ( ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( A <
35 simprl
 |-  ( ( ( ( A < ( A u. C ) <
36 ssun1
 |-  A C_ ( A u. C )
37 sssslt1
 |-  ( ( ( A u. C ) < A <
38 36 37 mpan2
 |-  ( ( A u. C ) < A <
39 35 38 syl
 |-  ( ( ( ( A < A <
40 simprr
 |-  ( ( ( ( A < { z } <
41 ssun1
 |-  B C_ ( B u. D )
42 sssslt2
 |-  ( ( { z } < { z } <
43 41 42 mpan2
 |-  ( { z } < { z } <
44 40 43 syl
 |-  ( ( ( ( A < { z } <
45 39 44 jca
 |-  ( ( ( ( A < ( A <
46 21 breq2d
 |-  ( y = z -> ( A < A <
47 21 breq1d
 |-  ( y = z -> ( { y } < { z } <
48 46 47 anbi12d
 |-  ( y = z -> ( ( A < ( A <
49 48 elrab
 |-  ( z e. { y e. No | ( A < ( z e. No /\ ( A <
50 27 45 49 sylanbrc
 |-  ( ( ( ( A < z e. { y e. No | ( A <
51 ssrab2
 |-  { y e. No | ( A <
52 fnfvima
 |-  ( ( bday Fn No /\ { y e. No | ( A < ( bday ` z ) e. ( bday " { y e. No | ( A <
53 28 51 52 mp3an12
 |-  ( z e. { y e. No | ( A < ( bday ` z ) e. ( bday " { y e. No | ( A <
54 50 53 syl
 |-  ( ( ( ( A < ( bday ` z ) e. ( bday " { y e. No | ( A <
55 intss1
 |-  ( ( bday ` z ) e. ( bday " { y e. No | ( A < |^| ( bday " { y e. No | ( A <
56 54 55 syl
 |-  ( ( ( ( A < |^| ( bday " { y e. No | ( A <
57 34 56 eqsstrd
 |-  ( ( ( ( A < ( bday ` ( A |s B ) ) C_ ( bday ` z ) )
58 sseq2
 |-  ( ( bday ` z ) = x -> ( ( bday ` ( A |s B ) ) C_ ( bday ` z ) <-> ( bday ` ( A |s B ) ) C_ x ) )
59 58 biimpd
 |-  ( ( bday ` z ) = x -> ( ( bday ` ( A |s B ) ) C_ ( bday ` z ) -> ( bday ` ( A |s B ) ) C_ x ) )
60 59 com12
 |-  ( ( bday ` ( A |s B ) ) C_ ( bday ` z ) -> ( ( bday ` z ) = x -> ( bday ` ( A |s B ) ) C_ x ) )
61 57 60 syl
 |-  ( ( ( ( A < ( ( bday ` z ) = x -> ( bday ` ( A |s B ) ) C_ x ) )
62 31 61 sylbird
 |-  ( ( ( ( A < ( z bday x -> ( bday ` ( A |s B ) ) C_ x ) )
63 62 ex
 |-  ( ( ( A < ( ( ( A u. C ) < ( z bday x -> ( bday ` ( A |s B ) ) C_ x ) ) )
64 63 impd
 |-  ( ( ( A < ( ( ( ( A u. C ) < ( bday ` ( A |s B ) ) C_ x ) )
65 64 rexlimdva
 |-  ( ( A < ( E. z e. No ( ( ( A u. C ) < ( bday ` ( A |s B ) ) C_ x ) )
66 26 65 syl5bi
 |-  ( ( A < ( x e. ( bday " { y e. No | ( ( A u. C ) < ( bday ` ( A |s B ) ) C_ x ) )
67 66 ralrimiv
 |-  ( ( A < A. x e. ( bday " { y e. No | ( ( A u. C ) <
68 ssint
 |-  ( ( bday ` ( A |s B ) ) C_ |^| ( bday " { y e. No | ( ( A u. C ) < A. x e. ( bday " { y e. No | ( ( A u. C ) <
69 67 68 sylibr
 |-  ( ( A < ( bday ` ( A |s B ) ) C_ |^| ( bday " { y e. No | ( ( A u. C ) <
70 3 simp1d
 |-  ( ( A < ( A |s B ) e. No )
71 7 11 jca
 |-  ( ( A < ( ( A u. C ) <
72 sneq
 |-  ( y = ( A |s B ) -> { y } = { ( A |s B ) } )
73 72 breq2d
 |-  ( y = ( A |s B ) -> ( ( A u. C ) < ( A u. C ) <
74 72 breq1d
 |-  ( y = ( A |s B ) -> ( { y } < { ( A |s B ) } <
75 73 74 anbi12d
 |-  ( y = ( A |s B ) -> ( ( ( A u. C ) < ( ( A u. C ) <
76 75 elrab
 |-  ( ( A |s B ) e. { y e. No | ( ( A u. C ) < ( ( A |s B ) e. No /\ ( ( A u. C ) <
77 70 71 76 sylanbrc
 |-  ( ( A < ( A |s B ) e. { y e. No | ( ( A u. C ) <
78 ssrab2
 |-  { y e. No | ( ( A u. C ) <
79 fnfvima
 |-  ( ( bday Fn No /\ { y e. No | ( ( A u. C ) < ( bday ` ( A |s B ) ) e. ( bday " { y e. No | ( ( A u. C ) <
80 28 78 79 mp3an12
 |-  ( ( A |s B ) e. { y e. No | ( ( A u. C ) < ( bday ` ( A |s B ) ) e. ( bday " { y e. No | ( ( A u. C ) <
81 77 80 syl
 |-  ( ( A < ( bday ` ( A |s B ) ) e. ( bday " { y e. No | ( ( A u. C ) <
82 intss1
 |-  ( ( bday ` ( A |s B ) ) e. ( bday " { y e. No | ( ( A u. C ) < |^| ( bday " { y e. No | ( ( A u. C ) <
83 81 82 syl
 |-  ( ( A < |^| ( bday " { y e. No | ( ( A u. C ) <
84 69 83 eqssd
 |-  ( ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( ( A u. C ) <
85 conway
 |-  ( ( A u. C ) < E! x e. { y e. No | ( ( A u. C ) <
86 16 85 syl
 |-  ( ( A < E! x e. { y e. No | ( ( A u. C ) <
87 fveqeq2
 |-  ( x = ( A |s B ) -> ( ( bday ` x ) = |^| ( bday " { y e. No | ( ( A u. C ) < ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( ( A u. C ) <
88 87 riota2
 |-  ( ( ( A |s B ) e. { y e. No | ( ( A u. C ) < ( ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( ( A u. C ) < ( iota_ x e. { y e. No | ( ( A u. C ) <
89 77 86 88 syl2anc
 |-  ( ( A < ( ( bday ` ( A |s B ) ) = |^| ( bday " { y e. No | ( ( A u. C ) < ( iota_ x e. { y e. No | ( ( A u. C ) <
90 84 89 mpbid
 |-  ( ( A < ( iota_ x e. { y e. No | ( ( A u. C ) <
91 90 eqcomd
 |-  ( ( A < ( A |s B ) = ( iota_ x e. { y e. No | ( ( A u. C ) <
92 18 91 eqtr4d
 |-  ( ( A < ( ( A u. C ) |s ( B u. D ) ) = ( A |s B ) )