Metamath Proof Explorer


Theorem scutbday

Description: The birthday of the surreal cut is equal to the minimum birthday in the gap. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion scutbday
|- ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { x e. No | ( A <

Proof

Step Hyp Ref Expression
1 scutval
 |-  ( A < ( A |s B ) = ( iota_ y e. { x e. No | ( A <
2 1 eqcomd
 |-  ( A < ( iota_ y e. { x e. No | ( A <
3 scutcut
 |-  ( A < ( ( A |s B ) e. No /\ A <
4 sneq
 |-  ( x = ( A |s B ) -> { x } = { ( A |s B ) } )
5 4 breq2d
 |-  ( x = ( A |s B ) -> ( A < A <
6 4 breq1d
 |-  ( x = ( A |s B ) -> ( { x } < { ( A |s B ) } <
7 5 6 anbi12d
 |-  ( x = ( A |s B ) -> ( ( A < ( A <
8 7 elrab
 |-  ( ( A |s B ) e. { x e. No | ( A < ( ( A |s B ) e. No /\ ( A <
9 3anass
 |-  ( ( ( A |s B ) e. No /\ A < ( ( A |s B ) e. No /\ ( A <
10 8 9 bitr4i
 |-  ( ( A |s B ) e. { x e. No | ( A < ( ( A |s B ) e. No /\ A <
11 3 10 sylibr
 |-  ( A < ( A |s B ) e. { x e. No | ( A <
12 conway
 |-  ( A < E! y e. { x e. No | ( A <
13 fveqeq2
 |-  ( y = ( A |s B ) -> ( ( bday ` y ) = |^| ( bday " { x e. No | ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { x e. No | ( A <
14 13 riota2
 |-  ( ( ( A |s B ) e. { x e. No | ( A < ( ( bday ` ( A |s B ) ) = |^| ( bday " { x e. No | ( A < ( iota_ y e. { x e. No | ( A <
15 11 12 14 syl2anc
 |-  ( A < ( ( bday ` ( A |s B ) ) = |^| ( bday " { x e. No | ( A < ( iota_ y e. { x e. No | ( A <
16 2 15 mpbird
 |-  ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { x e. No | ( A <