Step |
Hyp |
Ref |
Expression |
1 |
|
scutval |
|- ( A < ( A |s B ) = ( iota_ y e. { x e. No | ( A < |
2 |
1
|
eqcomd |
|- ( A < ( iota_ y e. { x e. No | ( A < |
3 |
|
scutcut |
|- ( A < ( ( A |s B ) e. No /\ A < |
4 |
|
sneq |
|- ( x = ( A |s B ) -> { x } = { ( A |s B ) } ) |
5 |
4
|
breq2d |
|- ( x = ( A |s B ) -> ( A < A < |
6 |
4
|
breq1d |
|- ( x = ( A |s B ) -> ( { x } < { ( A |s B ) } < |
7 |
5 6
|
anbi12d |
|- ( x = ( A |s B ) -> ( ( A < ( A < |
8 |
7
|
elrab |
|- ( ( A |s B ) e. { x e. No | ( A < ( ( A |s B ) e. No /\ ( A < |
9 |
|
3anass |
|- ( ( ( A |s B ) e. No /\ A < ( ( A |s B ) e. No /\ ( A < |
10 |
8 9
|
bitr4i |
|- ( ( A |s B ) e. { x e. No | ( A < ( ( A |s B ) e. No /\ A < |
11 |
3 10
|
sylibr |
|- ( A < ( A |s B ) e. { x e. No | ( A < |
12 |
|
conway |
|- ( A < E! y e. { x e. No | ( A < |
13 |
|
fveqeq2 |
|- ( y = ( A |s B ) -> ( ( bday ` y ) = |^| ( bday " { x e. No | ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { x e. No | ( A < |
14 |
13
|
riota2 |
|- ( ( ( A |s B ) e. { x e. No | ( A < ( ( bday ` ( A |s B ) ) = |^| ( bday " { x e. No | ( A < ( iota_ y e. { x e. No | ( A < |
15 |
11 12 14
|
syl2anc |
|- ( A < ( ( bday ` ( A |s B ) ) = |^| ( bday " { x e. No | ( A < ( iota_ y e. { x e. No | ( A < |
16 |
2 15
|
mpbird |
|- ( A < ( bday ` ( A |s B ) ) = |^| ( bday " { x e. No | ( A < |