Step |
Hyp |
Ref |
Expression |
1 |
|
scutval |
⊢ ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) = ( ℩ 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ( bday ‘ 𝑦 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) ) |
2 |
1
|
eqcomd |
⊢ ( 𝐴 <<s 𝐵 → ( ℩ 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ( bday ‘ 𝑦 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) = ( 𝐴 |s 𝐵 ) ) |
3 |
|
scutcut |
⊢ ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
4 |
|
sneq |
⊢ ( 𝑥 = ( 𝐴 |s 𝐵 ) → { 𝑥 } = { ( 𝐴 |s 𝐵 ) } ) |
5 |
4
|
breq2d |
⊢ ( 𝑥 = ( 𝐴 |s 𝐵 ) → ( 𝐴 <<s { 𝑥 } ↔ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) ) |
6 |
4
|
breq1d |
⊢ ( 𝑥 = ( 𝐴 |s 𝐵 ) → ( { 𝑥 } <<s 𝐵 ↔ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑥 = ( 𝐴 |s 𝐵 ) → ( ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) ↔ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) ) |
8 |
7
|
elrab |
⊢ ( ( 𝐴 |s 𝐵 ) ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ↔ ( ( 𝐴 |s 𝐵 ) ∈ No ∧ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) ) |
9 |
|
3anass |
⊢ ( ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ↔ ( ( 𝐴 |s 𝐵 ) ∈ No ∧ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) ) |
10 |
8 9
|
bitr4i |
⊢ ( ( 𝐴 |s 𝐵 ) ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ↔ ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
11 |
3 10
|
sylibr |
⊢ ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) |
12 |
|
conway |
⊢ ( 𝐴 <<s 𝐵 → ∃! 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ( bday ‘ 𝑦 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) |
13 |
|
fveqeq2 |
⊢ ( 𝑦 = ( 𝐴 |s 𝐵 ) → ( ( bday ‘ 𝑦 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ↔ ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) ) |
14 |
13
|
riota2 |
⊢ ( ( ( 𝐴 |s 𝐵 ) ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ∧ ∃! 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ( bday ‘ 𝑦 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ↔ ( ℩ 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ( bday ‘ 𝑦 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) = ( 𝐴 |s 𝐵 ) ) ) |
15 |
11 12 14
|
syl2anc |
⊢ ( 𝐴 <<s 𝐵 → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ↔ ( ℩ 𝑦 ∈ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ( bday ‘ 𝑦 ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) = ( 𝐴 |s 𝐵 ) ) ) |
16 |
2 15
|
mpbird |
⊢ ( 𝐴 <<s 𝐵 → ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( 𝐴 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝐵 ) } ) ) |