Step |
Hyp |
Ref |
Expression |
1 |
|
scutval |
⊢ ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) ) |
2 |
|
conway |
⊢ ( 𝐴 <<s 𝐵 → ∃! 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) |
3 |
|
riotacl |
⊢ ( ∃! 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) → ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) |
4 |
2 3
|
syl |
⊢ ( 𝐴 <<s 𝐵 → ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) |
5 |
1 4
|
eqeltrd |
⊢ ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) |
6 |
|
sneq |
⊢ ( 𝑦 = ( 𝐴 |s 𝐵 ) → { 𝑦 } = { ( 𝐴 |s 𝐵 ) } ) |
7 |
6
|
breq2d |
⊢ ( 𝑦 = ( 𝐴 |s 𝐵 ) → ( 𝐴 <<s { 𝑦 } ↔ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) ) |
8 |
6
|
breq1d |
⊢ ( 𝑦 = ( 𝐴 |s 𝐵 ) → ( { 𝑦 } <<s 𝐵 ↔ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
9 |
7 8
|
anbi12d |
⊢ ( 𝑦 = ( 𝐴 |s 𝐵 ) → ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ↔ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) ) |
10 |
9
|
elrab |
⊢ ( ( 𝐴 |s 𝐵 ) ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ↔ ( ( 𝐴 |s 𝐵 ) ∈ No ∧ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) ) |
11 |
|
3anass |
⊢ ( ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ↔ ( ( 𝐴 |s 𝐵 ) ∈ No ∧ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) ) |
12 |
10 11
|
bitr4i |
⊢ ( ( 𝐴 |s 𝐵 ) ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ↔ ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
13 |
5 12
|
sylib |
⊢ ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |