Metamath Proof Explorer


Theorem scutcut

Description: Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion scutcut ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) )

Proof

Step Hyp Ref Expression
1 scutval ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) = ( 𝑥 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday 𝑥 ) = ( bday “ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) )
2 conway ( 𝐴 <<s 𝐵 → ∃! 𝑥 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday 𝑥 ) = ( bday “ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) )
3 riotacl ( ∃! 𝑥 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday 𝑥 ) = ( bday “ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) → ( 𝑥 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday 𝑥 ) = ( bday “ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } )
4 2 3 syl ( 𝐴 <<s 𝐵 → ( 𝑥 ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ( bday 𝑥 ) = ( bday “ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } )
5 1 4 eqeltrd ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } )
6 sneq ( 𝑦 = ( 𝐴 |s 𝐵 ) → { 𝑦 } = { ( 𝐴 |s 𝐵 ) } )
7 6 breq2d ( 𝑦 = ( 𝐴 |s 𝐵 ) → ( 𝐴 <<s { 𝑦 } ↔ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) )
8 6 breq1d ( 𝑦 = ( 𝐴 |s 𝐵 ) → ( { 𝑦 } <<s 𝐵 ↔ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) )
9 7 8 anbi12d ( 𝑦 = ( 𝐴 |s 𝐵 ) → ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ↔ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) )
10 9 elrab ( ( 𝐴 |s 𝐵 ) ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ↔ ( ( 𝐴 |s 𝐵 ) ∈ No ∧ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) )
11 3anass ( ( ( 𝐴 |s 𝐵 ) ∈ No 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ↔ ( ( 𝐴 |s 𝐵 ) ∈ No ∧ ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) )
12 10 11 bitr4i ( ( 𝐴 |s 𝐵 ) ∈ { 𝑦 No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ↔ ( ( 𝐴 |s 𝐵 ) ∈ No 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) )
13 5 12 sylib ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) )