Metamath Proof Explorer


Theorem scutcut

Description: Cut properties of the surreal cut operation. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Assertion scutcut
|- ( A < ( ( A |s B ) e. No /\ A <

Proof

Step Hyp Ref Expression
1 scutval
 |-  ( A < ( A |s B ) = ( iota_ x e. { y e. No | ( A <
2 conway
 |-  ( A < E! x e. { y e. No | ( A <
3 riotacl
 |-  ( E! x e. { y e. No | ( A < ( iota_ x e. { y e. No | ( A <
4 2 3 syl
 |-  ( A < ( iota_ x e. { y e. No | ( A <
5 1 4 eqeltrd
 |-  ( A < ( A |s B ) e. { y e. No | ( A <
6 sneq
 |-  ( y = ( A |s B ) -> { y } = { ( A |s B ) } )
7 6 breq2d
 |-  ( y = ( A |s B ) -> ( A < A <
8 6 breq1d
 |-  ( y = ( A |s B ) -> ( { y } < { ( A |s B ) } <
9 7 8 anbi12d
 |-  ( y = ( A |s B ) -> ( ( A < ( A <
10 9 elrab
 |-  ( ( A |s B ) e. { y e. No | ( A < ( ( A |s B ) e. No /\ ( A <
11 3anass
 |-  ( ( ( A |s B ) e. No /\ A < ( ( A |s B ) e. No /\ ( A <
12 10 11 bitr4i
 |-  ( ( A |s B ) e. { y e. No | ( A < ( ( A |s B ) e. No /\ A <
13 5 12 sylib
 |-  ( A < ( ( A |s B ) e. No /\ A <