Metamath Proof Explorer


Theorem scutcl

Description: Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024)

Ref Expression
Assertion scutcl ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 scutcut ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) )
2 1 simp1d ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) ∈ No )