Metamath Proof Explorer


Theorem scutcld

Description: Closure law for surreal cuts. (Contributed by Scott Fenton, 23-Aug-2024)

Ref Expression
Hypothesis scutcld.1 ( 𝜑𝐴 <<s 𝐵 )
Assertion scutcld ( 𝜑 → ( 𝐴 |s 𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 scutcld.1 ( 𝜑𝐴 <<s 𝐵 )
2 scutcl ( 𝐴 <<s 𝐵 → ( 𝐴 |s 𝐵 ) ∈ No )
3 1 2 syl ( 𝜑 → ( 𝐴 |s 𝐵 ) ∈ No )