Step |
Hyp |
Ref |
Expression |
1 |
|
scutval |
⊢ ( 𝐿 <<s 𝑅 → ( 𝐿 |s 𝑅 ) = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) |
2 |
1
|
adantr |
⊢ ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ( 𝐿 |s 𝑅 ) = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) |
3 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
4 |
3
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐿 <<s { 𝑥 } ↔ 𝐿 <<s { 𝑦 } ) ) |
5 |
3
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( { 𝑥 } <<s 𝑅 ↔ { 𝑦 } <<s 𝑅 ) ) |
6 |
4 5
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ↔ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) ) ) |
7 |
6
|
riotarab |
⊢ ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) = ( ℩ 𝑥 ∈ No ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) |
8 |
2 7
|
eqtrdi |
⊢ ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ( 𝐿 |s 𝑅 ) = ( ℩ 𝑥 ∈ No ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) ) |
9 |
8
|
eqeq1d |
⊢ ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ( ( 𝐿 |s 𝑅 ) = 𝑋 ↔ ( ℩ 𝑥 ∈ No ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) = 𝑋 ) ) |
10 |
|
conway |
⊢ ( 𝐿 <<s 𝑅 → ∃! 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) |
11 |
6
|
reurab |
⊢ ( ∃! 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ↔ ∃! 𝑥 ∈ No ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) |
12 |
10 11
|
sylib |
⊢ ( 𝐿 <<s 𝑅 → ∃! 𝑥 ∈ No ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) |
13 |
|
df-3an |
⊢ ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ↔ ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) |
14 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
15 |
14
|
breq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝐿 <<s { 𝑥 } ↔ 𝐿 <<s { 𝑋 } ) ) |
16 |
14
|
breq1d |
⊢ ( 𝑥 = 𝑋 → ( { 𝑥 } <<s 𝑅 ↔ { 𝑋 } <<s 𝑅 ) ) |
17 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ↔ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) |
18 |
15 16 17
|
3anbi123d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ↔ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) ) |
19 |
13 18
|
bitr3id |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ↔ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) ) |
20 |
19
|
riota2 |
⊢ ( ( 𝑋 ∈ No ∧ ∃! 𝑥 ∈ No ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) → ( ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ↔ ( ℩ 𝑥 ∈ No ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) = 𝑋 ) ) |
21 |
20
|
ancoms |
⊢ ( ( ∃! 𝑥 ∈ No ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ∧ 𝑋 ∈ No ) → ( ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ↔ ( ℩ 𝑥 ∈ No ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) = 𝑋 ) ) |
22 |
12 21
|
sylan |
⊢ ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ( ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ↔ ( ℩ 𝑥 ∈ No ( ( 𝐿 <<s { 𝑥 } ∧ { 𝑥 } <<s 𝑅 ) ∧ ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) = 𝑋 ) ) |
23 |
9 22
|
bitr4d |
⊢ ( ( 𝐿 <<s 𝑅 ∧ 𝑋 ∈ No ) → ( ( 𝐿 |s 𝑅 ) = 𝑋 ↔ ( 𝐿 <<s { 𝑋 } ∧ { 𝑋 } <<s 𝑅 ∧ ( bday ‘ 𝑋 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐿 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑅 ) } ) ) ) ) |