Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → 𝐴 <<s 𝐵 ) |
2 |
|
scutcut |
⊢ ( 𝐴 <<s 𝐵 → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
3 |
1 2
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( ( 𝐴 |s 𝐵 ) ∈ No ∧ 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) ) |
4 |
3
|
simp2d |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ) |
5 |
|
simp2 |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ) |
6 |
|
ssltun1 |
⊢ ( ( 𝐴 <<s { ( 𝐴 |s 𝐵 ) } ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ) → ( 𝐴 ∪ 𝐶 ) <<s { ( 𝐴 |s 𝐵 ) } ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( 𝐴 ∪ 𝐶 ) <<s { ( 𝐴 |s 𝐵 ) } ) |
8 |
3
|
simp3d |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ) |
9 |
|
simp3 |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) |
10 |
|
ssltun2 |
⊢ ( ( { ( 𝐴 |s 𝐵 ) } <<s 𝐵 ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → { ( 𝐴 |s 𝐵 ) } <<s ( 𝐵 ∪ 𝐷 ) ) |
11 |
8 9 10
|
syl2anc |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → { ( 𝐴 |s 𝐵 ) } <<s ( 𝐵 ∪ 𝐷 ) ) |
12 |
|
ovex |
⊢ ( 𝐴 |s 𝐵 ) ∈ V |
13 |
12
|
snnz |
⊢ { ( 𝐴 |s 𝐵 ) } ≠ ∅ |
14 |
|
sslttr |
⊢ ( ( ( 𝐴 ∪ 𝐶 ) <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s ( 𝐵 ∪ 𝐷 ) ∧ { ( 𝐴 |s 𝐵 ) } ≠ ∅ ) → ( 𝐴 ∪ 𝐶 ) <<s ( 𝐵 ∪ 𝐷 ) ) |
15 |
13 14
|
mp3an3 |
⊢ ( ( ( 𝐴 ∪ 𝐶 ) <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s ( 𝐵 ∪ 𝐷 ) ) → ( 𝐴 ∪ 𝐶 ) <<s ( 𝐵 ∪ 𝐷 ) ) |
16 |
7 11 15
|
syl2anc |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( 𝐴 ∪ 𝐶 ) <<s ( 𝐵 ∪ 𝐷 ) ) |
17 |
|
scutval |
⊢ ( ( 𝐴 ∪ 𝐶 ) <<s ( 𝐵 ∪ 𝐷 ) → ( ( 𝐴 ∪ 𝐶 ) |s ( 𝐵 ∪ 𝐷 ) ) = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) ) |
18 |
16 17
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( ( 𝐴 ∪ 𝐶 ) |s ( 𝐵 ∪ 𝐷 ) ) = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) ) |
19 |
|
vex |
⊢ 𝑥 ∈ V |
20 |
19
|
elima |
⊢ ( 𝑥 ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } 𝑧 bday 𝑥 ) |
21 |
|
sneq |
⊢ ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } ) |
22 |
21
|
breq2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ↔ ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ) ) |
23 |
21
|
breq1d |
⊢ ( 𝑦 = 𝑧 → ( { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ↔ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) |
24 |
22 23
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) ↔ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) ) |
25 |
24
|
rexrab |
⊢ ( ∃ 𝑧 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } 𝑧 bday 𝑥 ↔ ∃ 𝑧 ∈ No ( ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ∧ 𝑧 bday 𝑥 ) ) |
26 |
20 25
|
bitri |
⊢ ( 𝑥 ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ↔ ∃ 𝑧 ∈ No ( ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ∧ 𝑧 bday 𝑥 ) ) |
27 |
|
simplr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → 𝑧 ∈ No ) |
28 |
|
bdayfn |
⊢ bday Fn No |
29 |
|
fnbrfvb |
⊢ ( ( bday Fn No ∧ 𝑧 ∈ No ) → ( ( bday ‘ 𝑧 ) = 𝑥 ↔ 𝑧 bday 𝑥 ) ) |
30 |
28 29
|
mpan |
⊢ ( 𝑧 ∈ No → ( ( bday ‘ 𝑧 ) = 𝑥 ↔ 𝑧 bday 𝑥 ) ) |
31 |
27 30
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → ( ( bday ‘ 𝑧 ) = 𝑥 ↔ 𝑧 bday 𝑥 ) ) |
32 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → 𝐴 <<s 𝐵 ) |
33 |
|
scutbday |
⊢ ( 𝐴 <<s 𝐵 → ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) |
34 |
32 33
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) |
35 |
|
simprl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ) |
36 |
|
ssun1 |
⊢ 𝐴 ⊆ ( 𝐴 ∪ 𝐶 ) |
37 |
|
sssslt1 |
⊢ ( ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ 𝐴 ⊆ ( 𝐴 ∪ 𝐶 ) ) → 𝐴 <<s { 𝑧 } ) |
38 |
36 37
|
mpan2 |
⊢ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } → 𝐴 <<s { 𝑧 } ) |
39 |
35 38
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → 𝐴 <<s { 𝑧 } ) |
40 |
|
simprr |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) |
41 |
|
ssun1 |
⊢ 𝐵 ⊆ ( 𝐵 ∪ 𝐷 ) |
42 |
|
sssslt2 |
⊢ ( ( { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ∧ 𝐵 ⊆ ( 𝐵 ∪ 𝐷 ) ) → { 𝑧 } <<s 𝐵 ) |
43 |
41 42
|
mpan2 |
⊢ ( { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) → { 𝑧 } <<s 𝐵 ) |
44 |
40 43
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → { 𝑧 } <<s 𝐵 ) |
45 |
39 44
|
jca |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → ( 𝐴 <<s { 𝑧 } ∧ { 𝑧 } <<s 𝐵 ) ) |
46 |
21
|
breq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝐴 <<s { 𝑦 } ↔ 𝐴 <<s { 𝑧 } ) ) |
47 |
21
|
breq1d |
⊢ ( 𝑦 = 𝑧 → ( { 𝑦 } <<s 𝐵 ↔ { 𝑧 } <<s 𝐵 ) ) |
48 |
46 47
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) ↔ ( 𝐴 <<s { 𝑧 } ∧ { 𝑧 } <<s 𝐵 ) ) ) |
49 |
48
|
elrab |
⊢ ( 𝑧 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ↔ ( 𝑧 ∈ No ∧ ( 𝐴 <<s { 𝑧 } ∧ { 𝑧 } <<s 𝐵 ) ) ) |
50 |
27 45 49
|
sylanbrc |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → 𝑧 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) |
51 |
|
ssrab2 |
⊢ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ⊆ No |
52 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ⊆ No ∧ 𝑧 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) → ( bday ‘ 𝑧 ) ∈ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) |
53 |
28 51 52
|
mp3an12 |
⊢ ( 𝑧 ∈ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } → ( bday ‘ 𝑧 ) ∈ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) |
54 |
50 53
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → ( bday ‘ 𝑧 ) ∈ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ) |
55 |
|
intss1 |
⊢ ( ( bday ‘ 𝑧 ) ∈ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) → ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ⊆ ( bday ‘ 𝑧 ) ) |
56 |
54 55
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝐴 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝐵 ) } ) ⊆ ( bday ‘ 𝑧 ) ) |
57 |
34 56
|
eqsstrd |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ( bday ‘ 𝑧 ) ) |
58 |
|
sseq2 |
⊢ ( ( bday ‘ 𝑧 ) = 𝑥 → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ( bday ‘ 𝑧 ) ↔ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) ) |
59 |
58
|
biimpd |
⊢ ( ( bday ‘ 𝑧 ) = 𝑥 → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ( bday ‘ 𝑧 ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) ) |
60 |
59
|
com12 |
⊢ ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ( bday ‘ 𝑧 ) → ( ( bday ‘ 𝑧 ) = 𝑥 → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) ) |
61 |
57 60
|
syl |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → ( ( bday ‘ 𝑧 ) = 𝑥 → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) ) |
62 |
31 61
|
sylbird |
⊢ ( ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ) → ( 𝑧 bday 𝑥 → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) ) |
63 |
62
|
ex |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) → ( ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) → ( 𝑧 bday 𝑥 → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) ) ) |
64 |
63
|
impd |
⊢ ( ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) ∧ 𝑧 ∈ No ) → ( ( ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ∧ 𝑧 bday 𝑥 ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) ) |
65 |
64
|
rexlimdva |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( ∃ 𝑧 ∈ No ( ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑧 } ∧ { 𝑧 } <<s ( 𝐵 ∪ 𝐷 ) ) ∧ 𝑧 bday 𝑥 ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) ) |
66 |
26 65
|
syl5bi |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( 𝑥 ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) ) |
67 |
66
|
ralrimiv |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ∀ 𝑥 ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) |
68 |
|
ssint |
⊢ ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ↔ ∀ 𝑥 ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ 𝑥 ) |
69 |
67 68
|
sylibr |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ⊆ ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) |
70 |
3
|
simp1d |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( 𝐴 |s 𝐵 ) ∈ No ) |
71 |
7 11
|
jca |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( ( 𝐴 ∪ 𝐶 ) <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s ( 𝐵 ∪ 𝐷 ) ) ) |
72 |
|
sneq |
⊢ ( 𝑦 = ( 𝐴 |s 𝐵 ) → { 𝑦 } = { ( 𝐴 |s 𝐵 ) } ) |
73 |
72
|
breq2d |
⊢ ( 𝑦 = ( 𝐴 |s 𝐵 ) → ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ↔ ( 𝐴 ∪ 𝐶 ) <<s { ( 𝐴 |s 𝐵 ) } ) ) |
74 |
72
|
breq1d |
⊢ ( 𝑦 = ( 𝐴 |s 𝐵 ) → ( { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ↔ { ( 𝐴 |s 𝐵 ) } <<s ( 𝐵 ∪ 𝐷 ) ) ) |
75 |
73 74
|
anbi12d |
⊢ ( 𝑦 = ( 𝐴 |s 𝐵 ) → ( ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) ↔ ( ( 𝐴 ∪ 𝐶 ) <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s ( 𝐵 ∪ 𝐷 ) ) ) ) |
76 |
75
|
elrab |
⊢ ( ( 𝐴 |s 𝐵 ) ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ↔ ( ( 𝐴 |s 𝐵 ) ∈ No ∧ ( ( 𝐴 ∪ 𝐶 ) <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s ( 𝐵 ∪ 𝐷 ) ) ) ) |
77 |
70 71 76
|
sylanbrc |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( 𝐴 |s 𝐵 ) ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) |
78 |
|
ssrab2 |
⊢ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ⊆ No |
79 |
|
fnfvima |
⊢ ( ( bday Fn No ∧ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ⊆ No ∧ ( 𝐴 |s 𝐵 ) ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) |
80 |
28 78 79
|
mp3an12 |
⊢ ( ( 𝐴 |s 𝐵 ) ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) |
81 |
77 80
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) |
82 |
|
intss1 |
⊢ ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) ∈ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) → ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ⊆ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
83 |
81 82
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ⊆ ( bday ‘ ( 𝐴 |s 𝐵 ) ) ) |
84 |
69 83
|
eqssd |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) |
85 |
|
conway |
⊢ ( ( 𝐴 ∪ 𝐶 ) <<s ( 𝐵 ∪ 𝐷 ) → ∃! 𝑥 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) |
86 |
16 85
|
syl |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ∃! 𝑥 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) |
87 |
|
fveqeq2 |
⊢ ( 𝑥 = ( 𝐴 |s 𝐵 ) → ( ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ↔ ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) ) |
88 |
87
|
riota2 |
⊢ ( ( ( 𝐴 |s 𝐵 ) ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ∧ ∃! 𝑥 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ↔ ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) = ( 𝐴 |s 𝐵 ) ) ) |
89 |
77 86 88
|
syl2anc |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( ( bday ‘ ( 𝐴 |s 𝐵 ) ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ↔ ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) = ( 𝐴 |s 𝐵 ) ) ) |
90 |
84 89
|
mpbid |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) = ( 𝐴 |s 𝐵 ) ) |
91 |
90
|
eqcomd |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( 𝐴 |s 𝐵 ) = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( ( 𝐴 ∪ 𝐶 ) <<s { 𝑦 } ∧ { 𝑦 } <<s ( 𝐵 ∪ 𝐷 ) ) } ) ) ) |
92 |
18 91
|
eqtr4d |
⊢ ( ( 𝐴 <<s 𝐵 ∧ 𝐶 <<s { ( 𝐴 |s 𝐵 ) } ∧ { ( 𝐴 |s 𝐵 ) } <<s 𝐷 ) → ( ( 𝐴 ∪ 𝐶 ) |s ( 𝐵 ∪ 𝐷 ) ) = ( 𝐴 |s 𝐵 ) ) |