Step |
Hyp |
Ref |
Expression |
1 |
|
dmoprab |
⊢ dom { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) } = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) } |
2 |
|
df-scut |
⊢ |s = ( 𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ { 𝑎 } ) ↦ ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) |
3 |
|
df-mpo |
⊢ ( 𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ { 𝑎 } ) ↦ ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) = { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) } |
4 |
2 3
|
eqtri |
⊢ |s = { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) } |
5 |
4
|
dmeqi |
⊢ dom |s = dom { 〈 〈 𝑎 , 𝑏 〉 , 𝑐 〉 ∣ ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) } |
6 |
|
df-sslt |
⊢ <<s = { 〈 𝑎 , 𝑏 〉 ∣ ( 𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀ 𝑥 ∈ 𝑎 ∀ 𝑦 ∈ 𝑏 𝑥 <s 𝑦 ) } |
7 |
6
|
relopabiv |
⊢ Rel <<s |
8 |
|
19.42v |
⊢ ( ∃ 𝑐 ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) ↔ ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ ∃ 𝑐 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) ) |
9 |
|
ssltss1 |
⊢ ( 𝑎 <<s 𝑏 → 𝑎 ⊆ No ) |
10 |
|
velpw |
⊢ ( 𝑎 ∈ 𝒫 No ↔ 𝑎 ⊆ No ) |
11 |
9 10
|
sylibr |
⊢ ( 𝑎 <<s 𝑏 → 𝑎 ∈ 𝒫 No ) |
12 |
11
|
pm4.71ri |
⊢ ( 𝑎 <<s 𝑏 ↔ ( 𝑎 ∈ 𝒫 No ∧ 𝑎 <<s 𝑏 ) ) |
13 |
|
vex |
⊢ 𝑎 ∈ V |
14 |
|
vex |
⊢ 𝑏 ∈ V |
15 |
13 14
|
elimasn |
⊢ ( 𝑏 ∈ ( <<s “ { 𝑎 } ) ↔ 〈 𝑎 , 𝑏 〉 ∈ <<s ) |
16 |
|
df-br |
⊢ ( 𝑎 <<s 𝑏 ↔ 〈 𝑎 , 𝑏 〉 ∈ <<s ) |
17 |
15 16
|
bitr4i |
⊢ ( 𝑏 ∈ ( <<s “ { 𝑎 } ) ↔ 𝑎 <<s 𝑏 ) |
18 |
17
|
anbi2i |
⊢ ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ↔ ( 𝑎 ∈ 𝒫 No ∧ 𝑎 <<s 𝑏 ) ) |
19 |
|
riotaex |
⊢ ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ∈ V |
20 |
19
|
isseti |
⊢ ∃ 𝑐 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) |
21 |
20
|
biantru |
⊢ ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ↔ ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ ∃ 𝑐 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) ) |
22 |
12 18 21
|
3bitr2i |
⊢ ( 𝑎 <<s 𝑏 ↔ ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ ∃ 𝑐 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) ) |
23 |
8 22 16
|
3bitr2ri |
⊢ ( 〈 𝑎 , 𝑏 〉 ∈ <<s ↔ ∃ 𝑐 ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) ) |
24 |
23
|
a1i |
⊢ ( ⊤ → ( 〈 𝑎 , 𝑏 〉 ∈ <<s ↔ ∃ 𝑐 ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) ) ) |
25 |
7 24
|
opabbi2dv |
⊢ ( ⊤ → <<s = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) } ) |
26 |
25
|
mptru |
⊢ <<s = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ( ( 𝑎 ∈ 𝒫 No ∧ 𝑏 ∈ ( <<s “ { 𝑎 } ) ) ∧ 𝑐 = ( ℩ 𝑥 ∈ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ( bday ‘ 𝑥 ) = ∩ ( bday “ { 𝑦 ∈ No ∣ ( 𝑎 <<s { 𝑦 } ∧ { 𝑦 } <<s 𝑏 ) } ) ) ) } |
27 |
1 5 26
|
3eqtr4i |
⊢ dom |s = <<s |