Step |
Hyp |
Ref |
Expression |
1 |
|
df-1s |
⊢ 1s = ( { 0s } |s ∅ ) |
2 |
1
|
fveq2i |
⊢ ( bday ‘ 1s ) = ( bday ‘ ( { 0s } |s ∅ ) ) |
3 |
|
0sno |
⊢ 0s ∈ No |
4 |
|
snelpwi |
⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) |
5 |
3 4
|
ax-mp |
⊢ { 0s } ∈ 𝒫 No |
6 |
|
nulssgt |
⊢ ( { 0s } ∈ 𝒫 No → { 0s } <<s ∅ ) |
7 |
5 6
|
ax-mp |
⊢ { 0s } <<s ∅ |
8 |
|
scutbdaybnd2 |
⊢ ( { 0s } <<s ∅ → ( bday ‘ ( { 0s } |s ∅ ) ) ⊆ suc ∪ ( bday “ ( { 0s } ∪ ∅ ) ) ) |
9 |
7 8
|
ax-mp |
⊢ ( bday ‘ ( { 0s } |s ∅ ) ) ⊆ suc ∪ ( bday “ ( { 0s } ∪ ∅ ) ) |
10 |
|
un0 |
⊢ ( { 0s } ∪ ∅ ) = { 0s } |
11 |
10
|
imaeq2i |
⊢ ( bday “ ( { 0s } ∪ ∅ ) ) = ( bday “ { 0s } ) |
12 |
|
bdayfn |
⊢ bday Fn No |
13 |
|
fnsnfv |
⊢ ( ( bday Fn No ∧ 0s ∈ No ) → { ( bday ‘ 0s ) } = ( bday “ { 0s } ) ) |
14 |
12 3 13
|
mp2an |
⊢ { ( bday ‘ 0s ) } = ( bday “ { 0s } ) |
15 |
|
bday0s |
⊢ ( bday ‘ 0s ) = ∅ |
16 |
15
|
sneqi |
⊢ { ( bday ‘ 0s ) } = { ∅ } |
17 |
11 14 16
|
3eqtr2i |
⊢ ( bday “ ( { 0s } ∪ ∅ ) ) = { ∅ } |
18 |
17
|
unieqi |
⊢ ∪ ( bday “ ( { 0s } ∪ ∅ ) ) = ∪ { ∅ } |
19 |
|
0ex |
⊢ ∅ ∈ V |
20 |
19
|
unisn |
⊢ ∪ { ∅ } = ∅ |
21 |
18 20
|
eqtri |
⊢ ∪ ( bday “ ( { 0s } ∪ ∅ ) ) = ∅ |
22 |
|
suceq |
⊢ ( ∪ ( bday “ ( { 0s } ∪ ∅ ) ) = ∅ → suc ∪ ( bday “ ( { 0s } ∪ ∅ ) ) = suc ∅ ) |
23 |
21 22
|
ax-mp |
⊢ suc ∪ ( bday “ ( { 0s } ∪ ∅ ) ) = suc ∅ |
24 |
|
df-1o |
⊢ 1o = suc ∅ |
25 |
23 24
|
eqtr4i |
⊢ suc ∪ ( bday “ ( { 0s } ∪ ∅ ) ) = 1o |
26 |
9 25
|
sseqtri |
⊢ ( bday ‘ ( { 0s } |s ∅ ) ) ⊆ 1o |
27 |
|
ssrab2 |
⊢ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ⊆ No |
28 |
|
fnssintima |
⊢ ( ( bday Fn No ∧ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ⊆ No ) → ( 1o ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) ↔ ∀ 𝑦 ∈ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } 1o ⊆ ( bday ‘ 𝑦 ) ) ) |
29 |
12 27 28
|
mp2an |
⊢ ( 1o ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) ↔ ∀ 𝑦 ∈ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } 1o ⊆ ( bday ‘ 𝑦 ) ) |
30 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
31 |
30
|
breq2d |
⊢ ( 𝑥 = 𝑦 → ( { 0s } <<s { 𝑥 } ↔ { 0s } <<s { 𝑦 } ) ) |
32 |
30
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( { 𝑥 } <<s ∅ ↔ { 𝑦 } <<s ∅ ) ) |
33 |
31 32
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) ↔ ( { 0s } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) ) ) |
34 |
33
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ↔ ( 𝑦 ∈ No ∧ ( { 0s } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) ) ) |
35 |
|
sltirr |
⊢ ( 0s ∈ No → ¬ 0s <s 0s ) |
36 |
3 35
|
ax-mp |
⊢ ¬ 0s <s 0s |
37 |
|
breq2 |
⊢ ( 𝑦 = 0s → ( 0s <s 𝑦 ↔ 0s <s 0s ) ) |
38 |
36 37
|
mtbiri |
⊢ ( 𝑦 = 0s → ¬ 0s <s 𝑦 ) |
39 |
38
|
necon2ai |
⊢ ( 0s <s 𝑦 → 𝑦 ≠ 0s ) |
40 |
|
bday0b |
⊢ ( 𝑦 ∈ No → ( ( bday ‘ 𝑦 ) = ∅ ↔ 𝑦 = 0s ) ) |
41 |
40
|
necon3bid |
⊢ ( 𝑦 ∈ No → ( ( bday ‘ 𝑦 ) ≠ ∅ ↔ 𝑦 ≠ 0s ) ) |
42 |
39 41
|
syl5ibr |
⊢ ( 𝑦 ∈ No → ( 0s <s 𝑦 → ( bday ‘ 𝑦 ) ≠ ∅ ) ) |
43 |
|
bdayelon |
⊢ ( bday ‘ 𝑦 ) ∈ On |
44 |
43
|
onordi |
⊢ Ord ( bday ‘ 𝑦 ) |
45 |
|
ordge1n0 |
⊢ ( Ord ( bday ‘ 𝑦 ) → ( 1o ⊆ ( bday ‘ 𝑦 ) ↔ ( bday ‘ 𝑦 ) ≠ ∅ ) ) |
46 |
44 45
|
ax-mp |
⊢ ( 1o ⊆ ( bday ‘ 𝑦 ) ↔ ( bday ‘ 𝑦 ) ≠ ∅ ) |
47 |
42 46
|
syl6ibr |
⊢ ( 𝑦 ∈ No → ( 0s <s 𝑦 → 1o ⊆ ( bday ‘ 𝑦 ) ) ) |
48 |
|
ssltsep |
⊢ ( { 0s } <<s { 𝑦 } → ∀ 𝑥 ∈ { 0s } ∀ 𝑧 ∈ { 𝑦 } 𝑥 <s 𝑧 ) |
49 |
|
vex |
⊢ 𝑦 ∈ V |
50 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 <s 𝑧 ↔ 𝑥 <s 𝑦 ) ) |
51 |
49 50
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { 𝑦 } 𝑥 <s 𝑧 ↔ 𝑥 <s 𝑦 ) |
52 |
51
|
ralbii |
⊢ ( ∀ 𝑥 ∈ { 0s } ∀ 𝑧 ∈ { 𝑦 } 𝑥 <s 𝑧 ↔ ∀ 𝑥 ∈ { 0s } 𝑥 <s 𝑦 ) |
53 |
3
|
elexi |
⊢ 0s ∈ V |
54 |
|
breq1 |
⊢ ( 𝑥 = 0s → ( 𝑥 <s 𝑦 ↔ 0s <s 𝑦 ) ) |
55 |
53 54
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { 0s } 𝑥 <s 𝑦 ↔ 0s <s 𝑦 ) |
56 |
52 55
|
bitri |
⊢ ( ∀ 𝑥 ∈ { 0s } ∀ 𝑧 ∈ { 𝑦 } 𝑥 <s 𝑧 ↔ 0s <s 𝑦 ) |
57 |
48 56
|
sylib |
⊢ ( { 0s } <<s { 𝑦 } → 0s <s 𝑦 ) |
58 |
47 57
|
impel |
⊢ ( ( 𝑦 ∈ No ∧ { 0s } <<s { 𝑦 } ) → 1o ⊆ ( bday ‘ 𝑦 ) ) |
59 |
58
|
adantrr |
⊢ ( ( 𝑦 ∈ No ∧ ( { 0s } <<s { 𝑦 } ∧ { 𝑦 } <<s ∅ ) ) → 1o ⊆ ( bday ‘ 𝑦 ) ) |
60 |
34 59
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } → 1o ⊆ ( bday ‘ 𝑦 ) ) |
61 |
29 60
|
mprgbir |
⊢ 1o ⊆ ∩ ( bday “ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) |
62 |
|
scutbday |
⊢ ( { 0s } <<s ∅ → ( bday ‘ ( { 0s } |s ∅ ) ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) ) |
63 |
7 62
|
ax-mp |
⊢ ( bday ‘ ( { 0s } |s ∅ ) ) = ∩ ( bday “ { 𝑥 ∈ No ∣ ( { 0s } <<s { 𝑥 } ∧ { 𝑥 } <<s ∅ ) } ) |
64 |
61 63
|
sseqtrri |
⊢ 1o ⊆ ( bday ‘ ( { 0s } |s ∅ ) ) |
65 |
26 64
|
eqssi |
⊢ ( bday ‘ ( { 0s } |s ∅ ) ) = 1o |
66 |
2 65
|
eqtri |
⊢ ( bday ‘ 1s ) = 1o |