| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-1s |
|
| 2 |
1
|
fveq2i |
|
| 3 |
|
0sno |
|
| 4 |
|
snelpwi |
|
| 5 |
3 4
|
ax-mp |
|
| 6 |
|
nulssgt |
|
| 7 |
5 6
|
ax-mp |
|
| 8 |
|
scutbdaybnd2 |
|
| 9 |
7 8
|
ax-mp |
|
| 10 |
|
un0 |
|
| 11 |
10
|
imaeq2i |
|
| 12 |
|
bdayfn |
|
| 13 |
|
fnsnfv |
|
| 14 |
12 3 13
|
mp2an |
|
| 15 |
|
bday0s |
|
| 16 |
15
|
sneqi |
|
| 17 |
11 14 16
|
3eqtr2i |
|
| 18 |
17
|
unieqi |
|
| 19 |
|
0ex |
|
| 20 |
19
|
unisn |
|
| 21 |
18 20
|
eqtri |
|
| 22 |
|
suceq |
|
| 23 |
21 22
|
ax-mp |
|
| 24 |
|
df-1o |
|
| 25 |
23 24
|
eqtr4i |
|
| 26 |
9 25
|
sseqtri |
|
| 27 |
|
ssrab2 |
|
| 28 |
|
fnssintima |
|
| 29 |
12 27 28
|
mp2an |
|
| 30 |
|
sneq |
|
| 31 |
30
|
breq2d |
|
| 32 |
30
|
breq1d |
|
| 33 |
31 32
|
anbi12d |
|
| 34 |
33
|
elrab |
|
| 35 |
|
sltirr |
|
| 36 |
3 35
|
ax-mp |
|
| 37 |
|
breq2 |
|
| 38 |
36 37
|
mtbiri |
|
| 39 |
38
|
necon2ai |
|
| 40 |
|
bday0b |
|
| 41 |
40
|
necon3bid |
|
| 42 |
39 41
|
imbitrrid |
|
| 43 |
|
bdayelon |
|
| 44 |
43
|
onordi |
|
| 45 |
|
ordge1n0 |
|
| 46 |
44 45
|
ax-mp |
|
| 47 |
42 46
|
imbitrrdi |
|
| 48 |
|
ssltsep |
|
| 49 |
|
vex |
|
| 50 |
|
breq2 |
|
| 51 |
49 50
|
ralsn |
|
| 52 |
51
|
ralbii |
|
| 53 |
3
|
elexi |
|
| 54 |
|
breq1 |
|
| 55 |
53 54
|
ralsn |
|
| 56 |
52 55
|
bitri |
|
| 57 |
48 56
|
sylib |
|
| 58 |
47 57
|
impel |
|
| 59 |
58
|
adantrr |
|
| 60 |
34 59
|
sylbi |
|
| 61 |
29 60
|
mprgbir |
|
| 62 |
|
scutbday |
|
| 63 |
7 62
|
ax-mp |
|
| 64 |
61 63
|
sseqtrri |
|
| 65 |
26 64
|
eqssi |
|
| 66 |
2 65
|
eqtri |
|