Metamath Proof Explorer


Theorem fnssintima

Description: Condition for subset of an intersection of an image. (Contributed by Scott Fenton, 16-Aug-2024)

Ref Expression
Assertion fnssintima FFnABACFBxBCFx

Proof

Step Hyp Ref Expression
1 ssint CFByFBCy
2 df-ral yFBCyyyFBCy
3 1 2 bitri CFByyFBCy
4 fvelimab FFnABAyFBxBFx=y
5 4 imbi1d FFnABAyFBCyxBFx=yCy
6 5 albidv FFnABAyyFBCyyxBFx=yCy
7 ralcom4 xByFx=yCyyxBFx=yCy
8 eqcom Fx=yy=Fx
9 8 imbi1i Fx=yCyy=FxCy
10 9 albii yFx=yCyyy=FxCy
11 fvex FxV
12 sseq2 y=FxCyCFx
13 11 12 ceqsalv yy=FxCyCFx
14 10 13 bitri yFx=yCyCFx
15 14 ralbii xByFx=yCyxBCFx
16 r19.23v xBFx=yCyxBFx=yCy
17 16 albii yxBFx=yCyyxBFx=yCy
18 7 15 17 3bitr3ri yxBFx=yCyxBCFx
19 6 18 bitrdi FFnABAyyFBCyxBCFx
20 3 19 bitrid FFnABACFBxBCFx