Description: A singleton of a set belongs to the power class of a class containing the set. (Contributed by Alan Sare, 25-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | snelpwi | |- ( A e. B -> { A } e. ~P B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi | |- ( A e. B -> { A } C_ B ) |
|
2 | snex | |- { A } e. _V |
|
3 | 2 | elpw | |- ( { A } e. ~P B <-> { A } C_ B ) |
4 | 1 3 | sylibr | |- ( A e. B -> { A } e. ~P B ) |