Description: A singleton of a set is a member of the powerclass of a class if and only if that set is a member of that class. (Contributed by NM, 1-Apr-1998) Put in closed form and avoid ax-nul . (Revised by BJ, 17-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | snelpwg | |- ( A e. V -> ( A e. B <-> { A } e. ~P B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg | |- ( A e. V -> ( A e. B <-> { A } C_ B ) ) |
|
2 | snexg | |- ( A e. V -> { A } e. _V ) |
|
3 | elpwg | |- ( { A } e. _V -> ( { A } e. ~P B <-> { A } C_ B ) ) |
|
4 | 2 3 | syl | |- ( A e. V -> ( { A } e. ~P B <-> { A } C_ B ) ) |
5 | 1 4 | bitr4d | |- ( A e. V -> ( A e. B <-> { A } e. ~P B ) ) |