Metamath Proof Explorer


Theorem mulscld

Description: The surreals are closed under multiplication. Theorem 8(i) of Conway p. 19. (Contributed by Scott Fenton, 6-Mar-2025)

Ref Expression
Hypotheses mulscld.1
|- ( ph -> A e. No )
mulscld.2
|- ( ph -> B e. No )
Assertion mulscld
|- ( ph -> ( A x.s B ) e. No )

Proof

Step Hyp Ref Expression
1 mulscld.1
 |-  ( ph -> A e. No )
2 mulscld.2
 |-  ( ph -> B e. No )
3 mulscl
 |-  ( ( A e. No /\ B e. No ) -> ( A x.s B ) e. No )
4 1 2 3 syl2anc
 |-  ( ph -> ( A x.s B ) e. No )