Description: Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divsclwd.1 | |- ( ph -> A e. No ) |
|
| divsclwd.2 | |- ( ph -> B e. No ) |
||
| divsclwd.3 | |- ( ph -> B =/= 0s ) |
||
| divsclwd.4 | |- ( ph -> E. x e. No ( B x.s x ) = 1s ) |
||
| Assertion | divsclwd | |- ( ph -> ( A /su B ) e. No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsclwd.1 | |- ( ph -> A e. No ) |
|
| 2 | divsclwd.2 | |- ( ph -> B e. No ) |
|
| 3 | divsclwd.3 | |- ( ph -> B =/= 0s ) |
|
| 4 | divsclwd.4 | |- ( ph -> E. x e. No ( B x.s x ) = 1s ) |
|
| 5 | divsclw | |- ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> ( A /su B ) e. No ) |
|
| 6 | 1 2 3 4 5 | syl31anc | |- ( ph -> ( A /su B ) e. No ) |