Metamath Proof Explorer


Theorem divsclw

Description: Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion divsclw
|- ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> ( A /su B ) e. No )

Proof

Step Hyp Ref Expression
1 divsval
 |-  ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) = ( iota_ y e. No ( B x.s y ) = A ) )
2 1 adantr
 |-  ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> ( A /su B ) = ( iota_ y e. No ( B x.s y ) = A ) )
3 3anrot
 |-  ( ( A e. No /\ B e. No /\ B =/= 0s ) <-> ( B e. No /\ B =/= 0s /\ A e. No ) )
4 noreceuw
 |-  ( ( ( B e. No /\ B =/= 0s /\ A e. No ) /\ E. x e. No ( B x.s x ) = 1s ) -> E! y e. No ( B x.s y ) = A )
5 3 4 sylanb
 |-  ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> E! y e. No ( B x.s y ) = A )
6 riotacl
 |-  ( E! y e. No ( B x.s y ) = A -> ( iota_ y e. No ( B x.s y ) = A ) e. No )
7 5 6 syl
 |-  ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> ( iota_ y e. No ( B x.s y ) = A ) e. No )
8 2 7 eqeltrd
 |-  ( ( ( A e. No /\ B e. No /\ B =/= 0s ) /\ E. x e. No ( B x.s x ) = 1s ) -> ( A /su B ) e. No )