| Step | Hyp | Ref | Expression | 
						
							| 1 |  | norecdiv |  |-  ( ( ( A e. No /\ A =/= 0s /\ B e. No ) /\ E. x e. No ( A x.s x ) = 1s ) -> E. y e. No ( A x.s y ) = B ) | 
						
							| 2 |  | divsmo |  |-  ( ( A e. No /\ A =/= 0s ) -> E* y e. No ( A x.s y ) = B ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( A e. No /\ A =/= 0s /\ B e. No ) -> E* y e. No ( A x.s y ) = B ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( A e. No /\ A =/= 0s /\ B e. No ) /\ E. x e. No ( A x.s x ) = 1s ) -> E* y e. No ( A x.s y ) = B ) | 
						
							| 5 |  | reu5 |  |-  ( E! y e. No ( A x.s y ) = B <-> ( E. y e. No ( A x.s y ) = B /\ E* y e. No ( A x.s y ) = B ) ) | 
						
							| 6 | 1 4 5 | sylanbrc |  |-  ( ( ( A e. No /\ A =/= 0s /\ B e. No ) /\ E. x e. No ( A x.s x ) = 1s ) -> E! y e. No ( A x.s y ) = B ) |