Metamath Proof Explorer


Theorem divsmo

Description: Uniqueness of surreal inversion. Given a non-zero surreal A , there is at most one surreal giving a particular product. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Assertion divsmo
|- ( ( A e. No /\ A =/= 0s ) -> E* x e. No ( A x.s x ) = B )

Proof

Step Hyp Ref Expression
1 eqtr3
 |-  ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> ( A x.s x ) = ( A x.s y ) )
2 simprl
 |-  ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> x e. No )
3 simprr
 |-  ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> y e. No )
4 simpll
 |-  ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> A e. No )
5 simplr
 |-  ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> A =/= 0s )
6 2 3 4 5 mulscan1d
 |-  ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> ( ( A x.s x ) = ( A x.s y ) <-> x = y ) )
7 1 6 imbitrid
 |-  ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> x = y ) )
8 7 ralrimivva
 |-  ( ( A e. No /\ A =/= 0s ) -> A. x e. No A. y e. No ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> x = y ) )
9 oveq2
 |-  ( x = y -> ( A x.s x ) = ( A x.s y ) )
10 9 eqeq1d
 |-  ( x = y -> ( ( A x.s x ) = B <-> ( A x.s y ) = B ) )
11 10 rmo4
 |-  ( E* x e. No ( A x.s x ) = B <-> A. x e. No A. y e. No ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> x = y ) )
12 8 11 sylibr
 |-  ( ( A e. No /\ A =/= 0s ) -> E* x e. No ( A x.s x ) = B )