Step |
Hyp |
Ref |
Expression |
1 |
|
eqtr3 |
|- ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> ( A x.s x ) = ( A x.s y ) ) |
2 |
|
simprl |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> x e. No ) |
3 |
|
simprr |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> y e. No ) |
4 |
|
simpll |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> A e. No ) |
5 |
|
simplr |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> A =/= 0s ) |
6 |
2 3 4 5
|
mulscan1d |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> ( ( A x.s x ) = ( A x.s y ) <-> x = y ) ) |
7 |
1 6
|
imbitrid |
|- ( ( ( A e. No /\ A =/= 0s ) /\ ( x e. No /\ y e. No ) ) -> ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> x = y ) ) |
8 |
7
|
ralrimivva |
|- ( ( A e. No /\ A =/= 0s ) -> A. x e. No A. y e. No ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> x = y ) ) |
9 |
|
oveq2 |
|- ( x = y -> ( A x.s x ) = ( A x.s y ) ) |
10 |
9
|
eqeq1d |
|- ( x = y -> ( ( A x.s x ) = B <-> ( A x.s y ) = B ) ) |
11 |
10
|
rmo4 |
|- ( E* x e. No ( A x.s x ) = B <-> A. x e. No A. y e. No ( ( ( A x.s x ) = B /\ ( A x.s y ) = B ) -> x = y ) ) |
12 |
8 11
|
sylibr |
|- ( ( A e. No /\ A =/= 0s ) -> E* x e. No ( A x.s x ) = B ) |