| Step | Hyp | Ref | Expression | 
						
							| 1 |  | norecdiv | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐴  ≠   0s   ∧  𝐵  ∈   No  )  ∧  ∃ 𝑥  ∈   No  ( 𝐴  ·s  𝑥 )  =   1s  )  →  ∃ 𝑦  ∈   No  ( 𝐴  ·s  𝑦 )  =  𝐵 ) | 
						
							| 2 |  | divsmo | ⊢ ( ( 𝐴  ∈   No   ∧  𝐴  ≠   0s  )  →  ∃* 𝑦  ∈   No  ( 𝐴  ·s  𝑦 )  =  𝐵 ) | 
						
							| 3 | 2 | 3adant3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐴  ≠   0s   ∧  𝐵  ∈   No  )  →  ∃* 𝑦  ∈   No  ( 𝐴  ·s  𝑦 )  =  𝐵 ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐴  ≠   0s   ∧  𝐵  ∈   No  )  ∧  ∃ 𝑥  ∈   No  ( 𝐴  ·s  𝑥 )  =   1s  )  →  ∃* 𝑦  ∈   No  ( 𝐴  ·s  𝑦 )  =  𝐵 ) | 
						
							| 5 |  | reu5 | ⊢ ( ∃! 𝑦  ∈   No  ( 𝐴  ·s  𝑦 )  =  𝐵  ↔  ( ∃ 𝑦  ∈   No  ( 𝐴  ·s  𝑦 )  =  𝐵  ∧  ∃* 𝑦  ∈   No  ( 𝐴  ·s  𝑦 )  =  𝐵 ) ) | 
						
							| 6 | 1 4 5 | sylanbrc | ⊢ ( ( ( 𝐴  ∈   No   ∧  𝐴  ≠   0s   ∧  𝐵  ∈   No  )  ∧  ∃ 𝑥  ∈   No  ( 𝐴  ·s  𝑥 )  =   1s  )  →  ∃! 𝑦  ∈   No  ( 𝐴  ·s  𝑦 )  =  𝐵 ) |