Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
|- ( B e. ( No \ { 0s } ) <-> ( B e. No /\ B =/= 0s ) ) |
2 |
|
eqeq2 |
|- ( y = A -> ( ( z x.s x ) = y <-> ( z x.s x ) = A ) ) |
3 |
2
|
riotabidv |
|- ( y = A -> ( iota_ x e. No ( z x.s x ) = y ) = ( iota_ x e. No ( z x.s x ) = A ) ) |
4 |
|
oveq1 |
|- ( z = B -> ( z x.s x ) = ( B x.s x ) ) |
5 |
4
|
eqeq1d |
|- ( z = B -> ( ( z x.s x ) = A <-> ( B x.s x ) = A ) ) |
6 |
5
|
riotabidv |
|- ( z = B -> ( iota_ x e. No ( z x.s x ) = A ) = ( iota_ x e. No ( B x.s x ) = A ) ) |
7 |
|
df-divs |
|- /su = ( y e. No , z e. ( No \ { 0s } ) |-> ( iota_ x e. No ( z x.s x ) = y ) ) |
8 |
|
riotaex |
|- ( iota_ x e. No ( B x.s x ) = A ) e. _V |
9 |
3 6 7 8
|
ovmpo |
|- ( ( A e. No /\ B e. ( No \ { 0s } ) ) -> ( A /su B ) = ( iota_ x e. No ( B x.s x ) = A ) ) |
10 |
1 9
|
sylan2br |
|- ( ( A e. No /\ ( B e. No /\ B =/= 0s ) ) -> ( A /su B ) = ( iota_ x e. No ( B x.s x ) = A ) ) |
11 |
10
|
3impb |
|- ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) = ( iota_ x e. No ( B x.s x ) = A ) ) |