| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifsn |  |-  ( B e. ( No \ { 0s } ) <-> ( B e. No /\ B =/= 0s ) ) | 
						
							| 2 |  | eqeq2 |  |-  ( y = A -> ( ( z x.s x ) = y <-> ( z x.s x ) = A ) ) | 
						
							| 3 | 2 | riotabidv |  |-  ( y = A -> ( iota_ x e. No ( z x.s x ) = y ) = ( iota_ x e. No ( z x.s x ) = A ) ) | 
						
							| 4 |  | oveq1 |  |-  ( z = B -> ( z x.s x ) = ( B x.s x ) ) | 
						
							| 5 | 4 | eqeq1d |  |-  ( z = B -> ( ( z x.s x ) = A <-> ( B x.s x ) = A ) ) | 
						
							| 6 | 5 | riotabidv |  |-  ( z = B -> ( iota_ x e. No ( z x.s x ) = A ) = ( iota_ x e. No ( B x.s x ) = A ) ) | 
						
							| 7 |  | df-divs |  |-  /su = ( y e. No , z e. ( No \ { 0s } ) |-> ( iota_ x e. No ( z x.s x ) = y ) ) | 
						
							| 8 |  | riotaex |  |-  ( iota_ x e. No ( B x.s x ) = A ) e. _V | 
						
							| 9 | 3 6 7 8 | ovmpo |  |-  ( ( A e. No /\ B e. ( No \ { 0s } ) ) -> ( A /su B ) = ( iota_ x e. No ( B x.s x ) = A ) ) | 
						
							| 10 | 1 9 | sylan2br |  |-  ( ( A e. No /\ ( B e. No /\ B =/= 0s ) ) -> ( A /su B ) = ( iota_ x e. No ( B x.s x ) = A ) ) | 
						
							| 11 | 10 | 3impb |  |-  ( ( A e. No /\ B e. No /\ B =/= 0s ) -> ( A /su B ) = ( iota_ x e. No ( B x.s x ) = A ) ) |