| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldifsn | ⊢ ( 𝐵  ∈  (  No   ∖  {  0s  } )  ↔  ( 𝐵  ∈   No   ∧  𝐵  ≠   0s  ) ) | 
						
							| 2 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑧  ·s  𝑥 )  =  𝑦  ↔  ( 𝑧  ·s  𝑥 )  =  𝐴 ) ) | 
						
							| 3 | 2 | riotabidv | ⊢ ( 𝑦  =  𝐴  →  ( ℩ 𝑥  ∈   No  ( 𝑧  ·s  𝑥 )  =  𝑦 )  =  ( ℩ 𝑥  ∈   No  ( 𝑧  ·s  𝑥 )  =  𝐴 ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑧  =  𝐵  →  ( 𝑧  ·s  𝑥 )  =  ( 𝐵  ·s  𝑥 ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( 𝑧  =  𝐵  →  ( ( 𝑧  ·s  𝑥 )  =  𝐴  ↔  ( 𝐵  ·s  𝑥 )  =  𝐴 ) ) | 
						
							| 6 | 5 | riotabidv | ⊢ ( 𝑧  =  𝐵  →  ( ℩ 𝑥  ∈   No  ( 𝑧  ·s  𝑥 )  =  𝐴 )  =  ( ℩ 𝑥  ∈   No  ( 𝐵  ·s  𝑥 )  =  𝐴 ) ) | 
						
							| 7 |  | df-divs | ⊢  /su   =  ( 𝑦  ∈   No  ,  𝑧  ∈  (  No   ∖  {  0s  } )  ↦  ( ℩ 𝑥  ∈   No  ( 𝑧  ·s  𝑥 )  =  𝑦 ) ) | 
						
							| 8 |  | riotaex | ⊢ ( ℩ 𝑥  ∈   No  ( 𝐵  ·s  𝑥 )  =  𝐴 )  ∈  V | 
						
							| 9 | 3 6 7 8 | ovmpo | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈  (  No   ∖  {  0s  } ) )  →  ( 𝐴  /su  𝐵 )  =  ( ℩ 𝑥  ∈   No  ( 𝐵  ·s  𝑥 )  =  𝐴 ) ) | 
						
							| 10 | 1 9 | sylan2br | ⊢ ( ( 𝐴  ∈   No   ∧  ( 𝐵  ∈   No   ∧  𝐵  ≠   0s  ) )  →  ( 𝐴  /su  𝐵 )  =  ( ℩ 𝑥  ∈   No  ( 𝐵  ·s  𝑥 )  =  𝐴 ) ) | 
						
							| 11 | 10 | 3impb | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐵  ≠   0s  )  →  ( 𝐴  /su  𝐵 )  =  ( ℩ 𝑥  ∈   No  ( 𝐵  ·s  𝑥 )  =  𝐴 ) ) |