Description: Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divsclwd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| divsclwd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| divsclwd.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | ||
| divsclwd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) | ||
| Assertion | divsclwd | ⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divsclwd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | divsclwd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | divsclwd.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | |
| 4 | divsclwd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) | |
| 5 | divsclw | ⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) ∧ ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) → ( 𝐴 /su 𝐵 ) ∈ No ) | |
| 6 | 1 2 3 4 5 | syl31anc | ⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No ) |