| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divsasswd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
divsasswd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
divsasswd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
divsasswd.4 |
⊢ ( 𝜑 → 𝐶 ≠ 0s ) |
| 5 |
|
divsasswd.5 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) |
| 6 |
2 3 4 5
|
divscan2wd |
⊢ ( 𝜑 → ( 𝐶 ·s ( 𝐵 /su 𝐶 ) ) = 𝐵 ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐶 ·s ( 𝐵 /su 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) ) |
| 8 |
2 3 4 5
|
divsclwd |
⊢ ( 𝜑 → ( 𝐵 /su 𝐶 ) ∈ No ) |
| 9 |
3 1 8
|
muls12d |
⊢ ( 𝜑 → ( 𝐶 ·s ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) = ( 𝐴 ·s ( 𝐶 ·s ( 𝐵 /su 𝐶 ) ) ) ) |
| 10 |
1 2
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
| 11 |
10 3 4 5
|
divscan2wd |
⊢ ( 𝜑 → ( 𝐶 ·s ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) ) = ( 𝐴 ·s 𝐵 ) ) |
| 12 |
7 9 11
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐶 ·s ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) ) = ( 𝐶 ·s ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) ) |
| 13 |
10 3 4 5
|
divsclwd |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) ∈ No ) |
| 14 |
1 8
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ∈ No ) |
| 15 |
13 14 3 4
|
mulscan1d |
⊢ ( 𝜑 → ( ( 𝐶 ·s ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) ) = ( 𝐶 ·s ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) ↔ ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) = ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) ) |
| 16 |
12 15
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) = ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) |