Metamath Proof Explorer


Theorem divsmul

Description: Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Assertion divsmul
|- ( ( A e. No /\ B e. No /\ ( C e. No /\ C =/= 0s ) ) -> ( ( A /su C ) = B <-> ( C x.s B ) = A ) )

Proof

Step Hyp Ref Expression
1 recsex
 |-  ( ( C e. No /\ C =/= 0s ) -> E. x e. No ( C x.s x ) = 1s )
2 1 3ad2ant3
 |-  ( ( A e. No /\ B e. No /\ ( C e. No /\ C =/= 0s ) ) -> E. x e. No ( C x.s x ) = 1s )
3 divsmulw
 |-  ( ( ( A e. No /\ B e. No /\ ( C e. No /\ C =/= 0s ) ) /\ E. x e. No ( C x.s x ) = 1s ) -> ( ( A /su C ) = B <-> ( C x.s B ) = A ) )
4 2 3 mpdan
 |-  ( ( A e. No /\ B e. No /\ ( C e. No /\ C =/= 0s ) ) -> ( ( A /su C ) = B <-> ( C x.s B ) = A ) )