| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0sno |
|- 0s e. No |
| 2 |
|
slttrine |
|- ( ( A e. No /\ 0s e. No ) -> ( A =/= 0s <-> ( A |
| 3 |
1 2
|
mpan2 |
|- ( A e. No -> ( A =/= 0s <-> ( A |
| 4 |
|
sltneg |
|- ( ( A e. No /\ 0s e. No ) -> ( A ( -us ` 0s ) |
| 5 |
1 4
|
mpan2 |
|- ( A e. No -> ( A ( -us ` 0s ) |
| 6 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
| 7 |
6
|
breq1i |
|- ( ( -us ` 0s ) 0s |
| 8 |
5 7
|
bitrdi |
|- ( A e. No -> ( A 0s |
| 9 |
|
negscl |
|- ( A e. No -> ( -us ` A ) e. No ) |
| 10 |
|
precsex |
|- ( ( ( -us ` A ) e. No /\ 0s E. y e. No ( ( -us ` A ) x.s y ) = 1s ) |
| 11 |
9 10
|
sylan |
|- ( ( A e. No /\ 0s E. y e. No ( ( -us ` A ) x.s y ) = 1s ) |
| 12 |
|
simprl |
|- ( ( ( A e. No /\ 0s y e. No ) |
| 13 |
12
|
negscld |
|- ( ( ( A e. No /\ 0s ( -us ` y ) e. No ) |
| 14 |
|
simpll |
|- ( ( ( A e. No /\ 0s A e. No ) |
| 15 |
|
simpr |
|- ( ( ( A e. No /\ 0s y e. No ) |
| 16 |
14 15
|
mulnegs1d |
|- ( ( ( A e. No /\ 0s ( ( -us ` A ) x.s y ) = ( -us ` ( A x.s y ) ) ) |
| 17 |
14 15
|
mulnegs2d |
|- ( ( ( A e. No /\ 0s ( A x.s ( -us ` y ) ) = ( -us ` ( A x.s y ) ) ) |
| 18 |
16 17
|
eqtr4d |
|- ( ( ( A e. No /\ 0s ( ( -us ` A ) x.s y ) = ( A x.s ( -us ` y ) ) ) |
| 19 |
18
|
eqeq1d |
|- ( ( ( A e. No /\ 0s ( ( ( -us ` A ) x.s y ) = 1s <-> ( A x.s ( -us ` y ) ) = 1s ) ) |
| 20 |
19
|
biimpd |
|- ( ( ( A e. No /\ 0s ( ( ( -us ` A ) x.s y ) = 1s -> ( A x.s ( -us ` y ) ) = 1s ) ) |
| 21 |
20
|
impr |
|- ( ( ( A e. No /\ 0s ( A x.s ( -us ` y ) ) = 1s ) |
| 22 |
|
oveq2 |
|- ( x = ( -us ` y ) -> ( A x.s x ) = ( A x.s ( -us ` y ) ) ) |
| 23 |
22
|
eqeq1d |
|- ( x = ( -us ` y ) -> ( ( A x.s x ) = 1s <-> ( A x.s ( -us ` y ) ) = 1s ) ) |
| 24 |
23
|
rspcev |
|- ( ( ( -us ` y ) e. No /\ ( A x.s ( -us ` y ) ) = 1s ) -> E. x e. No ( A x.s x ) = 1s ) |
| 25 |
13 21 24
|
syl2anc |
|- ( ( ( A e. No /\ 0s E. x e. No ( A x.s x ) = 1s ) |
| 26 |
11 25
|
rexlimddv |
|- ( ( A e. No /\ 0s E. x e. No ( A x.s x ) = 1s ) |
| 27 |
26
|
ex |
|- ( A e. No -> ( 0s E. x e. No ( A x.s x ) = 1s ) ) |
| 28 |
8 27
|
sylbid |
|- ( A e. No -> ( A E. x e. No ( A x.s x ) = 1s ) ) |
| 29 |
|
precsex |
|- ( ( A e. No /\ 0s E. x e. No ( A x.s x ) = 1s ) |
| 30 |
29
|
ex |
|- ( A e. No -> ( 0s E. x e. No ( A x.s x ) = 1s ) ) |
| 31 |
28 30
|
jaod |
|- ( A e. No -> ( ( A E. x e. No ( A x.s x ) = 1s ) ) |
| 32 |
3 31
|
sylbid |
|- ( A e. No -> ( A =/= 0s -> E. x e. No ( A x.s x ) = 1s ) ) |
| 33 |
32
|
imp |
|- ( ( A e. No /\ A =/= 0s ) -> E. x e. No ( A x.s x ) = 1s ) |