Metamath Proof Explorer


Theorem negscl

Description: The surreals are closed under negation. Theorem 6(ii) of Conway p. 18. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negscl
|- ( A e. No -> ( -us ` A ) e. No )

Proof

Step Hyp Ref Expression
1 0sno
 |-  0s e. No
2 negsprop
 |-  ( ( A e. No /\ 0s e. No ) -> ( ( -us ` A ) e. No /\ ( A  ( -us ` 0s ) 
3 1 2 mpan2
 |-  ( A e. No -> ( ( -us ` A ) e. No /\ ( A  ( -us ` 0s ) 
4 3 simpld
 |-  ( A e. No -> ( -us ` A ) e. No )