| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sltnegim |
|- ( ( A e. No /\ B e. No ) -> ( A ( -us ` B ) |
| 2 |
|
negscl |
|- ( B e. No -> ( -us ` B ) e. No ) |
| 3 |
|
negscl |
|- ( A e. No -> ( -us ` A ) e. No ) |
| 4 |
|
sltnegim |
|- ( ( ( -us ` B ) e. No /\ ( -us ` A ) e. No ) -> ( ( -us ` B ) ( -us ` ( -us ` A ) ) |
| 5 |
2 3 4
|
syl2anr |
|- ( ( A e. No /\ B e. No ) -> ( ( -us ` B ) ( -us ` ( -us ` A ) ) |
| 6 |
|
negnegs |
|- ( A e. No -> ( -us ` ( -us ` A ) ) = A ) |
| 7 |
|
negnegs |
|- ( B e. No -> ( -us ` ( -us ` B ) ) = B ) |
| 8 |
6 7
|
breqan12d |
|- ( ( A e. No /\ B e. No ) -> ( ( -us ` ( -us ` A ) ) A |
| 9 |
5 8
|
sylibd |
|- ( ( A e. No /\ B e. No ) -> ( ( -us ` B ) A |
| 10 |
1 9
|
impbid |
|- ( ( A e. No /\ B e. No ) -> ( A ( -us ` B ) |