Metamath Proof Explorer


Theorem sltneg

Description: Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion sltneg
|- ( ( A e. No /\ B e. No ) -> ( A  ( -us ` B ) 

Proof

Step Hyp Ref Expression
1 sltnegim
 |-  ( ( A e. No /\ B e. No ) -> ( A  ( -us ` B ) 
2 negscl
 |-  ( B e. No -> ( -us ` B ) e. No )
3 negscl
 |-  ( A e. No -> ( -us ` A ) e. No )
4 sltnegim
 |-  ( ( ( -us ` B ) e. No /\ ( -us ` A ) e. No ) -> ( ( -us ` B )  ( -us ` ( -us ` A ) ) 
5 2 3 4 syl2anr
 |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` B )  ( -us ` ( -us ` A ) ) 
6 negnegs
 |-  ( A e. No -> ( -us ` ( -us ` A ) ) = A )
7 negnegs
 |-  ( B e. No -> ( -us ` ( -us ` B ) ) = B )
8 6 7 breqan12d
 |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` ( -us ` A ) )  A 
9 5 8 sylibd
 |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` B )  A 
10 1 9 impbid
 |-  ( ( A e. No /\ B e. No ) -> ( A  ( -us ` B )