Metamath Proof Explorer


Theorem sltneg

Description: Negative of both sides of surreal less-than. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion sltneg Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A ( -us ` B )

Proof

Step Hyp Ref Expression
1 sltnegim Could not format ( ( A e. No /\ B e. No ) -> ( A ( -us ` B ) ( A ( -us ` B )
2 negscl Could not format ( B e. No -> ( -us ` B ) e. No ) : No typesetting found for |- ( B e. No -> ( -us ` B ) e. No ) with typecode |-
3 negscl Could not format ( A e. No -> ( -us ` A ) e. No ) : No typesetting found for |- ( A e. No -> ( -us ` A ) e. No ) with typecode |-
4 sltnegim Could not format ( ( ( -us ` B ) e. No /\ ( -us ` A ) e. No ) -> ( ( -us ` B ) ( -us ` ( -us ` A ) ) ( ( -us ` B ) ( -us ` ( -us ` A ) )
5 2 3 4 syl2anr Could not format ( ( A e. No /\ B e. No ) -> ( ( -us ` B ) ( -us ` ( -us ` A ) ) ( ( -us ` B ) ( -us ` ( -us ` A ) )
6 negnegs Could not format ( A e. No -> ( -us ` ( -us ` A ) ) = A ) : No typesetting found for |- ( A e. No -> ( -us ` ( -us ` A ) ) = A ) with typecode |-
7 negnegs Could not format ( B e. No -> ( -us ` ( -us ` B ) ) = B ) : No typesetting found for |- ( B e. No -> ( -us ` ( -us ` B ) ) = B ) with typecode |-
8 6 7 breqan12d Could not format ( ( A e. No /\ B e. No ) -> ( ( -us ` ( -us ` A ) ) A ( ( -us ` ( -us ` A ) ) A
9 5 8 sylibd Could not format ( ( A e. No /\ B e. No ) -> ( ( -us ` B ) A ( ( -us ` B ) A
10 1 9 impbid Could not format ( ( A e. No /\ B e. No ) -> ( A ( -us ` B ) ( A ( -us ` B )