Metamath Proof Explorer


Theorem sleneg

Description: Negative of both sides of surreal less-than or equal. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion sleneg Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sltneg Could not format ( ( B e. No /\ A e. No ) -> ( B ( -us ` A ) ( B ( -us ` A )
2 1 ancoms Could not format ( ( A e. No /\ B e. No ) -> ( B ( -us ` A ) ( B ( -us ` A )
3 2 notbid Could not format ( ( A e. No /\ B e. No ) -> ( -. B -. ( -us ` A ) ( -. B -. ( -us ` A )
4 slenlt ANoBNoAsB¬B<sA
5 negscl Could not format ( B e. No -> ( -us ` B ) e. No ) : No typesetting found for |- ( B e. No -> ( -us ` B ) e. No ) with typecode |-
6 negscl Could not format ( A e. No -> ( -us ` A ) e. No ) : No typesetting found for |- ( A e. No -> ( -us ` A ) e. No ) with typecode |-
7 slenlt Could not format ( ( ( -us ` B ) e. No /\ ( -us ` A ) e. No ) -> ( ( -us ` B ) <_s ( -us ` A ) <-> -. ( -us ` A ) ( ( -us ` B ) <_s ( -us ` A ) <-> -. ( -us ` A )
8 5 6 7 syl2anr Could not format ( ( A e. No /\ B e. No ) -> ( ( -us ` B ) <_s ( -us ` A ) <-> -. ( -us ` A ) ( ( -us ` B ) <_s ( -us ` A ) <-> -. ( -us ` A )
9 3 4 8 3bitr4d Could not format ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No ) -> ( A <_s B <-> ( -us ` B ) <_s ( -us ` A ) ) ) with typecode |-