| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltneg | ⊢ ( ( 𝐵  ∈   No   ∧  𝐴  ∈   No  )  →  ( 𝐵  <s  𝐴  ↔  (  -us  ‘ 𝐴 )  <s  (  -us  ‘ 𝐵 ) ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐵  <s  𝐴  ↔  (  -us  ‘ 𝐴 )  <s  (  -us  ‘ 𝐵 ) ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( ¬  𝐵  <s  𝐴  ↔  ¬  (  -us  ‘ 𝐴 )  <s  (  -us  ‘ 𝐵 ) ) ) | 
						
							| 4 |  | slenlt | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  ≤s  𝐵  ↔  ¬  𝐵  <s  𝐴 ) ) | 
						
							| 5 |  | negscl | ⊢ ( 𝐵  ∈   No   →  (  -us  ‘ 𝐵 )  ∈   No  ) | 
						
							| 6 |  | negscl | ⊢ ( 𝐴  ∈   No   →  (  -us  ‘ 𝐴 )  ∈   No  ) | 
						
							| 7 |  | slenlt | ⊢ ( ( (  -us  ‘ 𝐵 )  ∈   No   ∧  (  -us  ‘ 𝐴 )  ∈   No  )  →  ( (  -us  ‘ 𝐵 )  ≤s  (  -us  ‘ 𝐴 )  ↔  ¬  (  -us  ‘ 𝐴 )  <s  (  -us  ‘ 𝐵 ) ) ) | 
						
							| 8 | 5 6 7 | syl2anr | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( (  -us  ‘ 𝐵 )  ≤s  (  -us  ‘ 𝐴 )  ↔  ¬  (  -us  ‘ 𝐴 )  <s  (  -us  ‘ 𝐵 ) ) ) | 
						
							| 9 | 3 4 8 | 3bitr4d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  ≤s  𝐵  ↔  (  -us  ‘ 𝐵 )  ≤s  (  -us  ‘ 𝐴 ) ) ) |