Metamath Proof Explorer


Theorem negnegs

Description: A surreal is equal to the negative of its negative. Theorem 4(ii) of Conway p. 17. (Contributed by Scott Fenton, 3-Feb-2025)

Ref Expression
Assertion negnegs
|- ( A e. No -> ( -us ` ( -us ` A ) ) = A )

Proof

Step Hyp Ref Expression
1 negscl
 |-  ( A e. No -> ( -us ` A ) e. No )
2 1 negsidd
 |-  ( A e. No -> ( ( -us ` A ) +s ( -us ` ( -us ` A ) ) ) = 0s )
3 1 negscld
 |-  ( A e. No -> ( -us ` ( -us ` A ) ) e. No )
4 3 1 addscomd
 |-  ( A e. No -> ( ( -us ` ( -us ` A ) ) +s ( -us ` A ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` A ) ) ) )
5 negsid
 |-  ( A e. No -> ( A +s ( -us ` A ) ) = 0s )
6 2 4 5 3eqtr4d
 |-  ( A e. No -> ( ( -us ` ( -us ` A ) ) +s ( -us ` A ) ) = ( A +s ( -us ` A ) ) )
7 id
 |-  ( A e. No -> A e. No )
8 3 7 1 addscan2d
 |-  ( A e. No -> ( ( ( -us ` ( -us ` A ) ) +s ( -us ` A ) ) = ( A +s ( -us ` A ) ) <-> ( -us ` ( -us ` A ) ) = A ) )
9 6 8 mpbid
 |-  ( A e. No -> ( -us ` ( -us ` A ) ) = A )