Step |
Hyp |
Ref |
Expression |
1 |
|
negscl |
|- ( A e. No -> ( -us ` A ) e. No ) |
2 |
1
|
negsidd |
|- ( A e. No -> ( ( -us ` A ) +s ( -us ` ( -us ` A ) ) ) = 0s ) |
3 |
1
|
negscld |
|- ( A e. No -> ( -us ` ( -us ` A ) ) e. No ) |
4 |
3 1
|
addscomd |
|- ( A e. No -> ( ( -us ` ( -us ` A ) ) +s ( -us ` A ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` A ) ) ) ) |
5 |
|
negsid |
|- ( A e. No -> ( A +s ( -us ` A ) ) = 0s ) |
6 |
2 4 5
|
3eqtr4d |
|- ( A e. No -> ( ( -us ` ( -us ` A ) ) +s ( -us ` A ) ) = ( A +s ( -us ` A ) ) ) |
7 |
|
id |
|- ( A e. No -> A e. No ) |
8 |
3 7 1
|
addscan2d |
|- ( A e. No -> ( ( ( -us ` ( -us ` A ) ) +s ( -us ` A ) ) = ( A +s ( -us ` A ) ) <-> ( -us ` ( -us ` A ) ) = A ) ) |
9 |
6 8
|
mpbid |
|- ( A e. No -> ( -us ` ( -us ` A ) ) = A ) |