| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negscl |
|- ( A e. No -> ( -us ` A ) e. No ) |
| 2 |
1
|
negsidd |
|- ( A e. No -> ( ( -us ` A ) +s ( -us ` ( -us ` A ) ) ) = 0s ) |
| 3 |
1
|
negscld |
|- ( A e. No -> ( -us ` ( -us ` A ) ) e. No ) |
| 4 |
3 1
|
addscomd |
|- ( A e. No -> ( ( -us ` ( -us ` A ) ) +s ( -us ` A ) ) = ( ( -us ` A ) +s ( -us ` ( -us ` A ) ) ) ) |
| 5 |
|
negsid |
|- ( A e. No -> ( A +s ( -us ` A ) ) = 0s ) |
| 6 |
2 4 5
|
3eqtr4d |
|- ( A e. No -> ( ( -us ` ( -us ` A ) ) +s ( -us ` A ) ) = ( A +s ( -us ` A ) ) ) |
| 7 |
|
id |
|- ( A e. No -> A e. No ) |
| 8 |
3 7 1
|
addscan2d |
|- ( A e. No -> ( ( ( -us ` ( -us ` A ) ) +s ( -us ` A ) ) = ( A +s ( -us ` A ) ) <-> ( -us ` ( -us ` A ) ) = A ) ) |
| 9 |
6 8
|
mpbid |
|- ( A e. No -> ( -us ` ( -us ` A ) ) = A ) |