| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
| 2 |
1
|
negsidd |
⊢ ( 𝐴 ∈ No → ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ 𝐴 ) ) ) = 0s ) |
| 3 |
1
|
negscld |
⊢ ( 𝐴 ∈ No → ( -us ‘ ( -us ‘ 𝐴 ) ) ∈ No ) |
| 4 |
3 1
|
addscomd |
⊢ ( 𝐴 ∈ No → ( ( -us ‘ ( -us ‘ 𝐴 ) ) +s ( -us ‘ 𝐴 ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ 𝐴 ) ) ) ) |
| 5 |
|
negsid |
⊢ ( 𝐴 ∈ No → ( 𝐴 +s ( -us ‘ 𝐴 ) ) = 0s ) |
| 6 |
2 4 5
|
3eqtr4d |
⊢ ( 𝐴 ∈ No → ( ( -us ‘ ( -us ‘ 𝐴 ) ) +s ( -us ‘ 𝐴 ) ) = ( 𝐴 +s ( -us ‘ 𝐴 ) ) ) |
| 7 |
|
id |
⊢ ( 𝐴 ∈ No → 𝐴 ∈ No ) |
| 8 |
3 7 1
|
addscan2d |
⊢ ( 𝐴 ∈ No → ( ( ( -us ‘ ( -us ‘ 𝐴 ) ) +s ( -us ‘ 𝐴 ) ) = ( 𝐴 +s ( -us ‘ 𝐴 ) ) ↔ ( -us ‘ ( -us ‘ 𝐴 ) ) = 𝐴 ) ) |
| 9 |
6 8
|
mpbid |
⊢ ( 𝐴 ∈ No → ( -us ‘ ( -us ‘ 𝐴 ) ) = 𝐴 ) |