Metamath Proof Explorer


Theorem addscan2d

Description: Cancellation law for surreal addition. (Contributed by Scott Fenton, 5-Feb-2025)

Ref Expression
Hypotheses addscand.1 ( 𝜑𝐴 No )
addscand.2 ( 𝜑𝐵 No )
addscand.3 ( 𝜑𝐶 No )
Assertion addscan2d ( 𝜑 → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 addscand.1 ( 𝜑𝐴 No )
2 addscand.2 ( 𝜑𝐵 No )
3 addscand.3 ( 𝜑𝐶 No )
4 addscan2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ 𝐴 = 𝐵 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ 𝐴 = 𝐵 ) )