Metamath Proof Explorer
Description: Cancellation law for surreal addition. (Contributed by Scott Fenton, 5-Feb-2025)
|
|
Ref |
Expression |
|
Hypotheses |
addscand.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
addscand.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
addscand.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
|
Assertion |
addscan1d |
⊢ ( 𝜑 → ( ( 𝐶 +s 𝐴 ) = ( 𝐶 +s 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
addscand.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
addscand.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
addscand.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
addscan1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐶 +s 𝐴 ) = ( 𝐶 +s 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐶 +s 𝐴 ) = ( 𝐶 +s 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |