Metamath Proof Explorer


Theorem addscan1

Description: Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addscan1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐶 +s 𝐴 ) = ( 𝐶 +s 𝐵 ) ↔ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 addscom ( ( 𝐴 No 𝐶 No ) → ( 𝐴 +s 𝐶 ) = ( 𝐶 +s 𝐴 ) )
2 1 3adant2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐴 +s 𝐶 ) = ( 𝐶 +s 𝐴 ) )
3 addscom ( ( 𝐵 No 𝐶 No ) → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) )
4 3 3adant1 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) )
5 2 4 eqeq12d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ ( 𝐶 +s 𝐴 ) = ( 𝐶 +s 𝐵 ) ) )
6 addscan2 ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ 𝐴 = 𝐵 ) )
7 5 6 bitr3d ( ( 𝐴 No 𝐵 No 𝐶 No ) → ( ( 𝐶 +s 𝐴 ) = ( 𝐶 +s 𝐵 ) ↔ 𝐴 = 𝐵 ) )