Step |
Hyp |
Ref |
Expression |
1 |
|
addscom |
⊢ ( ( 𝐴 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 +s 𝐶 ) = ( 𝐶 +s 𝐴 ) ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐴 +s 𝐶 ) = ( 𝐶 +s 𝐴 ) ) |
3 |
|
addscom |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) = ( 𝐶 +s 𝐵 ) ) |
5 |
2 4
|
eqeq12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ ( 𝐶 +s 𝐴 ) = ( 𝐶 +s 𝐵 ) ) ) |
6 |
|
addscan2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐴 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
7 |
5 6
|
bitr3d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( ( 𝐶 +s 𝐴 ) = ( 𝐶 +s 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |