Database
SURREAL NUMBERS
Surreal arithmetic
Addition
addscan1
Next ⟩
sleadd1d
Metamath Proof Explorer
Ascii
Unicode
Theorem
addscan1
Description:
Cancellation law for surreal addition.
(Contributed by
Scott Fenton
, 21-Jan-2025)
Ref
Expression
Assertion
addscan1
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
C
+
s
A
=
C
+
s
B
↔
A
=
B
Proof
Step
Hyp
Ref
Expression
1
addscom
⊢
A
∈
No
∧
C
∈
No
→
A
+
s
C
=
C
+
s
A
2
1
3adant2
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
+
s
C
=
C
+
s
A
3
addscom
⊢
B
∈
No
∧
C
∈
No
→
B
+
s
C
=
C
+
s
B
4
3
3adant1
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
B
+
s
C
=
C
+
s
B
5
2
4
eqeq12d
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
+
s
C
=
B
+
s
C
↔
C
+
s
A
=
C
+
s
B
6
addscan2
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
A
+
s
C
=
B
+
s
C
↔
A
=
B
7
5
6
bitr3d
⊢
A
∈
No
∧
B
∈
No
∧
C
∈
No
→
C
+
s
A
=
C
+
s
B
↔
A
=
B