| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addscom |  |-  ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) | 
						
							| 2 | 1 | 3adant2 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) ) | 
						
							| 3 |  | addscom |  |-  ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) | 
						
							| 4 | 3 | 3adant1 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) ) | 
						
							| 5 | 2 4 | eqeq12d |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> ( C +s A ) = ( C +s B ) ) ) | 
						
							| 6 |  | addscan2 |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> A = B ) ) | 
						
							| 7 | 5 6 | bitr3d |  |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) = ( C +s B ) <-> A = B ) ) |