Metamath Proof Explorer


Theorem addscan1

Description: Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addscan1
|- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) = ( C +s B ) <-> A = B ) )

Proof

Step Hyp Ref Expression
1 addscom
 |-  ( ( A e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) )
2 1 3adant2
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) = ( C +s A ) )
3 addscom
 |-  ( ( B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) )
4 3 3adant1
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) = ( C +s B ) )
5 2 4 eqeq12d
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> ( C +s A ) = ( C +s B ) ) )
6 addscan2
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> A = B ) )
7 5 6 bitr3d
 |-  ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( C +s A ) = ( C +s B ) <-> A = B ) )