Metamath Proof Explorer


Theorem addscan2

Description: Cancellation law for surreal addition. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Assertion addscan2 Could not format assertion : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> A = B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 sleadd1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) with typecode |-
2 sleadd1 Could not format ( ( B e. No /\ A e. No /\ C e. No ) -> ( B <_s A <-> ( B +s C ) <_s ( A +s C ) ) ) : No typesetting found for |- ( ( B e. No /\ A e. No /\ C e. No ) -> ( B <_s A <-> ( B +s C ) <_s ( A +s C ) ) ) with typecode |-
3 2 3com12 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( B <_s A <-> ( B +s C ) <_s ( A +s C ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B <_s A <-> ( B +s C ) <_s ( A +s C ) ) ) with typecode |-
4 1 3 anbi12d Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A <_s B /\ B <_s A ) <-> ( ( A +s C ) <_s ( B +s C ) /\ ( B +s C ) <_s ( A +s C ) ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A <_s B /\ B <_s A ) <-> ( ( A +s C ) <_s ( B +s C ) /\ ( B +s C ) <_s ( A +s C ) ) ) ) with typecode |-
5 sletri3 ANoBNoA=BAsBBsA
6 5 3adant3 ANoBNoCNoA=BAsBBsA
7 addscl Could not format ( ( A e. No /\ C e. No ) -> ( A +s C ) e. No ) : No typesetting found for |- ( ( A e. No /\ C e. No ) -> ( A +s C ) e. No ) with typecode |-
8 7 3adant2 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A +s C ) e. No ) with typecode |-
9 addscl Could not format ( ( B e. No /\ C e. No ) -> ( B +s C ) e. No ) : No typesetting found for |- ( ( B e. No /\ C e. No ) -> ( B +s C ) e. No ) with typecode |-
10 9 3adant1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) e. No ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( B +s C ) e. No ) with typecode |-
11 sletri3 Could not format ( ( ( A +s C ) e. No /\ ( B +s C ) e. No ) -> ( ( A +s C ) = ( B +s C ) <-> ( ( A +s C ) <_s ( B +s C ) /\ ( B +s C ) <_s ( A +s C ) ) ) ) : No typesetting found for |- ( ( ( A +s C ) e. No /\ ( B +s C ) e. No ) -> ( ( A +s C ) = ( B +s C ) <-> ( ( A +s C ) <_s ( B +s C ) /\ ( B +s C ) <_s ( A +s C ) ) ) ) with typecode |-
12 8 10 11 syl2anc Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> ( ( A +s C ) <_s ( B +s C ) /\ ( B +s C ) <_s ( A +s C ) ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> ( ( A +s C ) <_s ( B +s C ) /\ ( B +s C ) <_s ( A +s C ) ) ) ) with typecode |-
13 4 6 12 3bitr4rd Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> A = B ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( ( A +s C ) = ( B +s C ) <-> A = B ) ) with typecode |-