| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sleadd1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  ≤s  𝐵  ↔  ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 2 |  | sleadd1 | ⊢ ( ( 𝐵  ∈   No   ∧  𝐴  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  ≤s  𝐴  ↔  ( 𝐵  +s  𝐶 )  ≤s  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 3 | 2 | 3com12 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  ≤s  𝐴  ↔  ( 𝐵  +s  𝐶 )  ≤s  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 4 | 1 3 | anbi12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  ≤s  𝐵  ∧  𝐵  ≤s  𝐴 )  ↔  ( ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 )  ∧  ( 𝐵  +s  𝐶 )  ≤s  ( 𝐴  +s  𝐶 ) ) ) ) | 
						
							| 5 |  | sletri3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No  )  →  ( 𝐴  =  𝐵  ↔  ( 𝐴  ≤s  𝐵  ∧  𝐵  ≤s  𝐴 ) ) ) | 
						
							| 6 | 5 | 3adant3 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  =  𝐵  ↔  ( 𝐴  ≤s  𝐵  ∧  𝐵  ≤s  𝐴 ) ) ) | 
						
							| 7 |  | addscl | ⊢ ( ( 𝐴  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  +s  𝐶 )  ∈   No  ) | 
						
							| 8 | 7 | 3adant2 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐴  +s  𝐶 )  ∈   No  ) | 
						
							| 9 |  | addscl | ⊢ ( ( 𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  +s  𝐶 )  ∈   No  ) | 
						
							| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( 𝐵  +s  𝐶 )  ∈   No  ) | 
						
							| 11 |  | sletri3 | ⊢ ( ( ( 𝐴  +s  𝐶 )  ∈   No   ∧  ( 𝐵  +s  𝐶 )  ∈   No  )  →  ( ( 𝐴  +s  𝐶 )  =  ( 𝐵  +s  𝐶 )  ↔  ( ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 )  ∧  ( 𝐵  +s  𝐶 )  ≤s  ( 𝐴  +s  𝐶 ) ) ) ) | 
						
							| 12 | 8 10 11 | syl2anc | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  +s  𝐶 )  =  ( 𝐵  +s  𝐶 )  ↔  ( ( 𝐴  +s  𝐶 )  ≤s  ( 𝐵  +s  𝐶 )  ∧  ( 𝐵  +s  𝐶 )  ≤s  ( 𝐴  +s  𝐶 ) ) ) ) | 
						
							| 13 | 4 6 12 | 3bitr4rd | ⊢ ( ( 𝐴  ∈   No   ∧  𝐵  ∈   No   ∧  𝐶  ∈   No  )  →  ( ( 𝐴  +s  𝐶 )  =  ( 𝐵  +s  𝐶 )  ↔  𝐴  =  𝐵 ) ) |